
© 1998 Barnabas Projects Limited

State-Event Executive

User Guide

Barnabas Projects Limited
60 Naishcombe Hill

Wick
Nr. Bristol BS30 5QS

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 2 of 51

Table of Contents

1. Introduction__5

1.1 Overview __5
1.2 How to Use the Executive and How it Works ____________________6

2. Application Program Interface___________________________________8

2.1 System Calls ___8
2.1.1 State Machine Functions ______________________________________8
2.1.1.1 execCancelStateTransition()__________________________________8
2.1.1.2 execDisableStateMachine() __________________________________8
2.1.1.3 execEnableStateMachine() ___________________________________8
2.1.1.4 execGetCurrentState() ______________________________________9
2.1.1.5 execGetNextState() ___9
2.1.1.6 execGetStateMachine()______________________________________9
2.1.1.7 execSetCurrentState()______________________________________10
2.1.1.8 execSetNextState() __10
2.1.2 Event Processing Functions ___________________________________10
2.1.2.1 execDeleteEvent() ___10
2.1.2.2 execIsQueueFull()___11
2.1.2.3 execPostEvent() __11
2.1.2.4 execPostInputEvents() _____________________________________12
2.1.2.5 execPostPriorityEvent() ____________________________________12
2.1.3 Timer Functions __13
2.1.3.1 execKillTimer()___13
2.1.3.2 execProcessTimeouts() _____________________________________13
2.1.3.3 execPurgeTimer() ___13
2.1.3.4 execSetTimer() ___14
2.1.4 Data Queue Functions _______________________________________14
2.1.4.1 execDataQueueOk() _______________________________________14
2.1.4.2 execGetData()__15
2.1.4.3 execGetDataItems() _______________________________________15
2.1.4.4 execGetDataSpace() _______________________________________16
2.1.4.5 execPeekData()___16
2.1.4.6 execPendingData() __17
2.1.4.7 execPostData() ___17
2.1.4.8 execPurgeData()__18
2.1.5 Asynchronous Communications Protocol Functions________________18
2.1.5.1 Important Points __18
2.1.5.2 execAsyncBufferOut() ______________________________________19
2.1.5.3 execAsyncByteIn()___20
2.1.5.4 execPackData()___20
2.1.5.5 execUnPackData() __21
2.1.6 System and Other Functions __________________________________21
2.1.6.1 execCheckIntegrity()_______________________________________21
2.1.6.2 execGetPriority() ___22

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 3 of 51

2.1.6.3 execSafeCpuIdle()___22
2.1.6.4 execTraceEvent() ___23
2.1.6.5 execUpdateChecksum() ____________________________________23
2.2 Application-Provided Routines_______________________________23
2.2.1.1 execAppCurrentTick()______________________________________23
2.2.1.2 execAppFinish() __24
2.2.1.3 execAppIdle() __24
2.2.1.4 execAppInit()___24
2.2.1.5 execAppPostExternalEvent() ________________________________25
2.2.1.6 execAppResyncTimer() _____________________________________25
2.2.1.7 execAppTrace()___26
2.2.1.8 Timer Interrupt Routine ____________________________________26
2.3 Running under Microsoft Windows___________________________26
2.3.1 Important Points__26
2.3.2 execWinLockExec()___28
2.3.3 execWinStart() ___28
2.3.4 execWinQuit() ___29
2.3.5 execWinUnLockExec() ______________________________________29
2.4 Test Harness Facilities ______________________________________29
2.4.1 Introduction ___29
2.4.2 execTestAdvanceTimer()_____________________________________30
2.4.3 execTestDoEvents() ___30
2.4.4 execTestStart() ___30
2.5 Application-Provided Data Structures_________________________31
2.5.1 Event Definition Table_______________________________________31
2.5.2 Event Queue Definition Table _________________________________31
2.5.3 Input Event Definition Table __________________________________32
2.5.4 State Machine Definition Table ________________________________33
2.5.5 State Transition Table _______________________________________33
2.5.6 Structure Definition Array ____________________________________34
2.5.7 Incoming Asynchronous Data Stream State ______________________35
2.5.8 Other Values___37
2.5.9 Generating Definitions Automatically ___________________________37

3. Design and Implementation Details of the Executive ________________39

3.1 Posting Events___39
3.2 Retrieving Events __39
3.3 Handling Timers___40
3.4 Internal Data Structures ____________________________________40
3.4.1 Event Trace Enable Table ____________________________________40
3.4.2 Current State Table ___41
3.4.3 Timer Queue___41
3.4.4 Data Queues ___41

4. Application Example__43

4.1 Script for Generating Source Code Tables _____________________43
4.2 Application Definition Header File Data _______________________44
4.3 Application Main Header File Data ___________________________45

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 4 of 51

4.4 Application-Provided Data Structures_________________________46
4.5 Application-Provided Routines_______________________________47
4.6 State Machines __48

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 5 of 51

1. INTRODUCTION

1.1 Overview

(1) The State-Event Executive is a co-operative scheduling system which can be
adapted to run on any suitable microprocessor. It is particularly suited to
microcontrollers where RAM and particularly stack space is very limited, and a
deterministic real-time response is required.

(2) The key feature that distinguishes this from other kernels is that all procedures
must run to completion without calls to any ‘wait’ function to wait for an event or
a time delay. This is the same as the normal practice used to design interrupt
routines. It requires an object-orientated approach to design, in much the same
way that modern Windows programs are designed, except that this system is much
simpler, and the implementation is in C rather than C++.

(3) The advantage of this approach is that it is very efficient in its use of the stack and
RAM. Task ‘waiting’ mid-way through in order to allow processing by a lower
priority task, would require a significantly more complex context switch. On
microcontrollers with very small stacks, this would entail significant manipulation
of the stack, which may involve the shifting of stack segments in memory, making
pointers to local variables become invalid without warning (a source of latent or
unpredictable bugs).

(4) A further advantage is that all events are processed via a central point in the
system, which makes for powerful tracing and debugging without the need to write
special code.

(5) The system is table-driven which makes event response times very short.

(6) The executive revolves around event queues which exist at different priority
levels. Processes post events which are then routed through the system and
handled by the appropriate procedures which depend on the state machine to
which that event belongs, and the state of that state machine.

(7) Thus, in a system where all the event functions are relatively small, and the
longest is of a predictable length, then time-critical functions can be performed
deterministically without the need to resort to pre-emptive scheduling.

(8) In a typical system, therefore, information is gathered in interrupt routines, and
then processed at the appropriate priority by state-event processing routines. Note
that it is possible to run a system completely without interrupts, though it usually
preferable to have at least one timer interrupt routine for accurate scheduling of
events.

(9) There are multiple versions of the executive compiled with different combinations
of compile options. The options are:

(a) 8 or 16-bit events (define WORDQ to enable 16-bit events)
(b) Constant or variable structure (define VCONST= for variable structure)

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 6 of 51

(c) 8 or 16-bit control variables (define BIGAPP for 16-bit variables)

(d) Down counting timer (define COUNTDOWN for down counting)

(e) Data queues of greater than 255 bytes (define BIGDATA)

1.2 How to Use the Executive and How it Works

(1) The first and most important feature that must be appreciated is that applications
written using the executive do not have a start and thread of execution in the
conventional sense. There is no ‘main’ function (although this actually exists as
part of the executive itself). Every item of processing that is performing is done in
response to an event, with the exception of initialisation which is performed in an
application-provided routine, called by the executive on start-up.

(2) Being table driven, an application does not merely consist of executable code, but
also data tables of various kinds, most of which are designed to run in ROM. In
addition to event-handling functions, each state machine has a state transition
table, which defines the operation of a particular state machine, and how it hangs
together.

(3) In addition to state transition tables which define the behaviour of state machines,
there is a single main set of tables which define the events and state machines, and
tie the system together. The system is also tied together by a set of definitions
provided by the application header file (ExecApp.h).

(4) Other than event-handling functions, there are a number of other routines that have
to be supplied in order for the application to successfully link with the executive.
These functions handle initialisation, timers, system idle and debug trace data
forwarding.

(5) The processing of an event and state transition can be illustrated as follows:

Event

Event
number Local

event

State
machine

Current
state

Next
state

Event
function

States

Events

Event
definition

table

X

Current
state
table

State
transition

tables

Function
call

Update

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 7 of 51

(6) For each state machine there are a fixed number of states defined. Events are all
pre-defined by the application, and each event feeds one (and only one) state
machine. For each combination of state and event on each state machine, a state to
change to is defined, and also a function to be called as part of the state transition.

(7) No processing is performed without the posting of events, and a sequence of
events is normally triggered by interrupt activity: the arrival of data of some sort.
Each event is posted at a particular priority, and events are processed on a first-in-
first-out basis and in order of priority.

(8) In terms of execution priority, there are a configurable number of priority levels
(up to 256). Each priority level has an event queue associated with it. Thus, if
there were 8 priority levels, there would be 8 event queues.

(9) If there is an event outstanding on a queue at a higher priority level, then the
current event processing routine runs to completion, and after that processing is
switched to the higher priority queue. All events are processed on that queue
before returning to processing events on the original queue.

(10) The system is potentially capable of supporting up to 255 (optionally 65535)
events and 256 (optionally 65536) state machines. Each state machine can be
disabled or in one of up to 255 states, and be uniquely connected to up to 256
events each.

(11) All data structures that define a particular system structure (see section 2.5) are
user-supplied. In terms of linkage, the names of the structures are referenced
within the executive, and structure definitions exist within the executive header
file, but the actual data is defined within the code of the application.

(12) A timer system is included as part of the executive. Timers are statically allocated
and are single shot (not periodic). A portion of the implementation of the timer
sub-system is provided by the application since it is hardware dependent. The
system operates optimally when it uses a 16-bit free-running timer in conjunction
with a 16-bit compare register, triggering an interrupt upon match. The
application example (see section 4.5) shows a typical implementation. There may
be up to 256 (optionally 65536) timers in a system.

(13) If an accurate periodic timer is required, then it is recommended to use a separate
timer interrupt. Systems that use a sample cycle will often capture data in a
periodic interrupt routine. The posting of an event from this interrupt routine is
used to signal that data has been captured, and this is used as the basis of the main
system sample period and scheduling.

(14) To ensure the integrity of these data structures, it recommended to use manifest
constants (#defines) to define sizes of arrays, etc.

(15) Note that servicing of the watchdog is performed between the calling of event
functions, and therefore should not be done in the application.

(16) For further clarification as to the structuring of an application, see the application
example in section 4.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 8 of 51

2. APPLICATION PROGRAM INTERFACE

2.1 System Calls

2.1.1 State Machine Functions

2.1.1.1 execCancelStateTransition()

(1) Function prototype:

void execCancelStateTransition(void);

(2) Parameters: none

(3) Returns: nothing

(4) For the currently executing state machine, the current state number is copied to the
next state number.

(5) This function should not be called from an interrupt routine as it will cause
unpredictable results.

2.1.1.2 execDisableStateMachine()

(1) Function prototype:

boolean execDisableStateMachine(word or byte Machine);

(2) Parameters: Machine state machine to be disabled

(3) Returns: true if it succeeded or false if it failed. It will fail if the parameter passed
is invalid.

(4) This function sets this current state of a machine to zero (disabled).

(5) This function can be called at any time (including from within the state machine to
be disabled).

(6) The current state table should not be accessed directly.

2.1.1.3 execEnableStateMachine()

(1) Function prototype:

boolean execEnableStateMachine(word or byte Machine,
byte InitialState);

(2) Parameters: Machine state machine to be enabled

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 9 of 51

InitialState initial state of that state machine

(3) Returns: true if it succeeded or false if it failed. It will fail if the parameters
passed are invalid or if that state machine is already enabled, or if the state
machine was disabled while it was being processed (which will always run to
completion) and a request to enable was made while it was still being processed.

(4) The executive starts up with all the state machines disabled unless the current state
table is defined by the application as having other initial values.

(5) If a controlled startup is required, then it is recommended to use this function.

2.1.1.4 execGetCurrentState()

(1) Function prototype:

byte execGetCurrentState(word or byte Machine);

(2) Parameters: Machine state machine to get current state of

(3) Returns: the state number of the specified state machine or 0 if an invalid state
machine number is passed (0 also indicates that a state machine is disabled).

(4) This number is updated when the event processing function completes.

(5) The current state machine can be determined by calling execGetStateMachine .

2.1.1.5 execGetNextState()

(1) Function prototype:

byte execGetNextState(void);

(2) Parameters: none

(3) Returns: the state number that the currently being processed state machine will be
set to when event processing function completes. If no state machine is being
processed (this will only occur if this function is called from an interrupt routine or
the idle routine) then zero will be returned.

2.1.1.6 execGetStateMachine()

(1) Function prototype:

word or byte execGetStateMachine(void);

(2) Parameters: none

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 10 of 51

(3) Returns: the number of the state machine which is currently being processed. If
no state machine is being processed (this will only occur if this function is called
from an interrupt routine, or if called from the application idle) then the number of
the last state machine to have been processed will be returned.

2.1.1.7 execSetCurrentState()

(1) Function prototype:

boolean execSetCurrentState(word or byte Machine, byte NewState);

(2) Parameters: Machine state machine to set current state of
NewState the state to change the state machine to

(3) Returns: true if it succeeded or false if it failed. It will fail if the state specified is
not a valid state for the state machine specified (or if the state machine number is
invalid).

(4) Use this function for (temporary) debugging purposes only. Use
execCancelStateTransition or execSetNextState to override the default state
transition from within a state transition function. Use execEnableStateMachine
to set the initial state of a state machine.

(5) Use of this function may give misleading results in event tracing.

2.1.1.8 execSetNextState()

(1) Function prototype:

boolean execSetNextState(byte NextState);

(2) Parameters: NextState the state to divert the transition to

(3) Returns: true if it succeeded or false if it failed. It will fail if the state specified is
not a valid state for the current state machine.

(4) This function is used to override the ‘next state’ value in the state transition table,
in order to divert the state transition to another state.

(5) This function should not be called from an interrupt routine as it will cause
unpredictable results.

2.1.2 Event Processing Functions

2.1.2.1 execDeleteEvent()

(1) Function prototype:

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 11 of 51

boolean execDeleteEvent(word or byte Event);

(2) Parameters: Event posted event to be cancelled

(3) Returns: true if an event of that number was found and cancelled or false if not.

(4) This function searches all the queues from the highest priority (event at the front
of the queue) to the lowest and substitutes an event number of zero in every
occurrence it finds.

(5) It is recommended only to use this function if no other means of achieving this
result can be done (i.e. it is best not to post the event in the first place if it is
possible that it may need to be deleted). This is because it comparatively time
consuming, although its efficiency is optimised by the fact that the event queues
are contiguous, and therefore it just searches the entire array of all the queues from
start to finish.

(6) Typically, this operation is performed when the source of an event is disabled (e.g.
an interrupt routine or timer) and it is required to ensure that there are no events
outstanding from that source.

2.1.2.2 execIsQueueFull()

(1) Function prototype:

boolean execIsQueueFull(byte Priority);

(2) Parameters: Priority indicates which queue

(3) Returns: true if the queue is full (cannot be posted to) or false if it is not. The
same criteria are applied as per execPostPriorityEvent .

2.1.2.3 execPostEvent()

(1) Function prototype:

boolean execPostEvent(word or byte Event);

(2) Parameters: Event event number to post

(3) Returns: true if it succeeded or false if it failed. It will fail if the queue is already
full or if the event is not valid.

(4) Events are processed in order of the priority of the queue on which it is placed.

(5) If the event queue system only supports byte events, then the high order byte of
the event is ignored.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 12 of 51

2.1.2.4 execPostInputEvents()

(1) Function prototype:

boolean execPostInputEvents(word NewInputs,
 word *OldInputs,
 word *ValidatedInputs,
struct execInputEvents *EventDefinitions);

(2) Parameters: NewInputs inputs at current poll (16 bits)
OldInputs pointer to inputs at last poll
ValidatedInputs pointer to filtered (validated) input states
EventDefinitions pointer to input event definition table

(3) Returns: true if it succeeded or false if it failed. It will fail if any of the events in
the event definition table are invalid (all valid events will be posted, however), or
if any event could not be posted because its queue was full.

(4) This function is used to post events based on 16 bit inputs contained in a word.

(5) Only those bits indicated by 1’s in the bit mask in the input event definition table
are affected. This is so that bits within a particular input word can be processed at
different scan rates and priorities.

(6) For each bit, the appropriate high or low event is generated if that bit in the new
inputs is the same as in the old inputs but different from the validated inputs. This
therefore implements single stage software debounce.

(7) If software debounce is not required, let OldInputs point to NewInputs as well,
hence any change in state will appear to have occurred on successive iterations and
will hence cause ValidatedInputs to change immediately on a change in state.

(8) When the events have been posted, NewInputs is copied to OldInputs .

(9) If a queue cannot be posted to, then the old inputs for the affected bits are not
updated to the new values. That is, it will give further opportunities for the event
to be posted when this function is next called with a new set of inputs (provided
the relevant input does not change).

2.1.2.5 execPostPriorityEvent()

(1) Function prototype:

boolean execPostPriorityEvent(word or byte Event, byte Priority);

(2) Parameters: Event event number to post
Priority queue priority to post to

(3) Returns: true if it succeeded or false if it failed. The same criteria are applied as
per execPostEvent . Additionally, it will fail if an invalid queue priority is
passed.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 13 of 51

(4) The functionality is identical to execPostEvent , except that the event priority
(and hence event queue) is overridden.

2.1.3 Timer Functions

2.1.3.1 execKillTimer()

(1) Function prototype:

boolean execKillTimer(word or byte Timer);

(2) Parameters: Timer the number of the timer to disable (kill)

(3) Returns: true if it succeeded or false if it failed. It will fail if an invalid timer
number is passed (but not if the timer has already been killed).

(4) This disables the timer, but does not remove any pending events posted by that
timer. Use execPurgeTimer if this is required.

2.1.3.2 execProcessTimeouts()

(1) Function prototype:

word execProcessTimeouts(word TickCount);

(2) Parameters: TickCount the current main timer value

(3) Returns: the tick count at which the next timeout is due to occur. If the value
returned is the same as the value passed, it implies that all timers have timed out,
and the timer subsystem can be disabled.

(4) This function is designed to be called from within the timer interrupt routine only.
For this reason there is no queue locking performed on the timer queue.

(5) This function may be called without detrimental effects if no timeout is due. It
may also be called late, that is, if a small number of tick counts have passed since
the pending timeout has become due. For the sake of accuracy and performance, it
is preferable, though, that this is called exactly at the point of timeout and only on
the point of timeout.

2.1.3.3 execPurgeTimer()

(1) Function prototype:

boolean execPurgeTimer(word or byte Timer);

(2) Parameters: Timer the number of the timer to disable (kill)

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 14 of 51

(3) Returns: true if it succeeded or false if it failed. It will fail if an invalid timer
number is passed (but not if the timer has already been killed).

(4) This disables the timer and removes any pending events posted by that timer.
(Note that all occurrences of the event stored as the EventToPost for that timer
will be removed from the event queues. The implication is that this event would be
unique to this timer, i.e. not used by any other timer or function. Use
execKillTimer in preference to this function unless this action is definitely
required. This is because removing events from the queues is time consuming.

2.1.3.4 execSetTimer()

(1) Function prototype:

boolean execSetTimer(word or byte Timer, word TimeDelay,

word or byte Event);

(2) Parameters: Timer the number of the timer to set
TimeDelay the value of the time delay
Event the event number to post on timeout

(3) Returns: true if it succeeded or false if it failed. It will fail if an invalid timer or
event number is passed.

(4) Setting a time delay or event number of 0 will disable the timer. The macro
execKillTimer is provided for this purpose.

(5) Calling an already-running timer will restart it with the new time delay value and
event.

(6) Note that the timer units are user defined, and depend on the programming of
execAppTimerControl and its associated interrupt routine.

2.1.4 Data Queue Functions

2.1.4.1 execDataQueueOk()

(1) Function prototype:

boolean execDataQueueOk (byte *Queue, word or byte QueueSize);

(2) Parameters: Queue the queue to get the data from
QueueSize the size of the queue in bytes

(3) Returns: true if the queue is not corrupted. It will return false if the queue’s
internal data structures (pointers, etc.) imply that queue entries exist outside the
memory extent of the queue or overlap one another.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 15 of 51

(4) The QueueSize is the size of the Queue array in bytes, which is best obtained
using the sizeof() operator. This may be most easily done using the DATAQ()
macro, where DATAQ(MyQueue) expands to MyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined by extern byte MyQueue[x] not extern byte

*MyQueue in the application’s header file.

(5) For details of the queue implementation, see section 3.4.4.

2.1.4.2 execGetData()

(1) Function prototype:

byte execGetData (byte *Queue, word or byte QueueSize,
byte *Buffer);

(2) Parameters: Queue the queue to get the data from
QueueSize the size of the queue in bytes
Buffer the buffer in which to place the retrieved data

(3) Returns: the number of bytes retrieved. It will return 0 if there is nothing pending
on the data queue.

(4) The buffer must be big enough to hold the data retrieved (no check is made). The
number of bytes retrieved will never exceed 255.

(5) The QueueSize is the size of the Queue array in bytes, which is best obtained
using the sizeof() operator. This may be most easily done using the DATAQ()
macro, where DATAQ(MyQueue) expands to MyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined by extern byte MyQueue[x] not extern byte

*MyQueue in the application’s header file.

(6) For details of the queue implementation, see section 3.4.4.

2.1.4.3 execGetDataItems()

(1) Function prototype:

byte or word execGetDataItems (byte *Queue,

word or byte QueueSize);

(2) Parameters: Queue the queue in which to count items
QueueSize the size of the queue in bytes

(3) Returns: the number of items (individually posted buffers) that are present on the
queue. It will return 0 if the queue is empty.

(4) The QueueSize is the size of the Queue array in bytes, which is best obtained
using the sizeof() operator. This may be most easily done using the DATAQ()

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 16 of 51

macro, where DATAQ(MyQueue) expands to MyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined by extern byte MyQueue[x] not extern byte

*MyQueue in the application’s header file.

(5) For details of the queue implementation, see section 3.4.4.

2.1.4.4 execGetDataSpace()

(1) Function prototype:

byte execGetDataSpace (byte *Queue, word or byte QueueSize);

(2) Parameters: Queue the queue to examine for space
QueueSize the size of the queue in bytes

(3) Returns: the number of bytes that can be posted onto the given data queue. It will
return 0 if the data queue is completely full.

(4) The QueueSize is the size of the Queue array in bytes, which is best obtained
using the sizeof() operator. This may be most easily done using the DATAQ()
macro, where DATAQ(MyQueue) expands to MyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined by extern byte MyQueue[x] not extern byte

*MyQueue in the application’s header file.

(5) For details of the queue implementation, see section 3.4.4.

2.1.4.5 execPeekData()

(1) Function prototype:

byte execPeekData (byte *Queue, word or byte QueueSize,

byte *Buffer, word or byte ItemNumber);

(2) Parameters: Queue the queue to get the data from
QueueSize the size of the queue in bytes
Buffer the buffer in which to place the retrieved data
ItemNumber the buffer from the front of the queue to inspect

(3) Returns: the number of bytes retrieved. It will return 0 if the item number does not
exist (i.e. is outside the bounds of the number of items on the queue).

(4) The buffer must be big enough to hold the data retrieved (no check is made). The
number of bytes retrieved will never exceed 255.

(5) When the data is retrieved, only a copy of the data is taken. The queue itself
remains unaltered.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 17 of 51

(6) Item number 0 refers to the item that will be fetched in the next execGetData()
call. Item numbers then follow sequentially along the queue from there, up to the
most recently posted.

(7) The QueueSize is the size of the Queue array in bytes, which is best obtained
using the sizeof() operator. This may be most easily done using the DATAQ()
macro, where DATAQ(MyQueue) expands to MyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined by extern byte MyQueue[x] not extern byte

*MyQueue in the application’s header file.

(8) For details of the queue implementation, see section 3.4.4.

2.1.4.6 execPendingData()

(1) Function prototype:

byte execPendingData (byte *Queue);

(2) Parameters: Queue the queue on which to check whether there is data

(3) Returns: the number of bytes pending retrieval. It will return 0 if there is nothing
pending on the data queue.

(4) For details of the queue implementation, see section 3.4.4.

2.1.4.7 execPostData()

(1) Function prototype:

boolean execPostData (byte *Queue, word or byte QueueSize,
byte *Buffer, byte Size);

(2) Parameters: Queue the queue on which to post the data
QueueSize the size of the queue in bytes
Buffer the data to post
Size the number of bytes of data to post

(3) Returns: true if it succeeded or false if it failed. It will fail if there is not enough
space on the queue to post the data.

(4) The QueueSize is the size of the Queue array in bytes, which is best obtained
using the sizeof() operator. This may be most easily done using the DATAQ()
macro, where DATAQ(MyQueue) expands to MyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined by extern byte MyQueue[x] not extern byte

*MyQueue in the application’s header file.

(5) For details of the queue implementation, see section 3.4.4.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 18 of 51

2.1.4.8 execPurgeData()

(1) Function prototype:

void execPurgeData (byte *Queue);

(2) Parameters: Queue the queue to be purged

(3) Returns: nothing.

(4) This function resets a queue and deletes all its contents. (In actual fact, only the
header data is reset. The remaining bytes are untouched.)

2.1.5 Asynchronous Communications Protocol Functions

2.1.5.1 Important Points

(1) The protocol is designed for use on multi-drop master-slave arrangements such as
RS485. The protocol supports a master and up to 254 slave nodes (although
RS485 physically supports only up to 32 nodes on a given link). The protocol also
supports broadcast, which is implemented by transmitting on a node number of
255. The protocol can also be used with a point-to-point arrangement such as
RS232.

(2) The protocol uses a half-duplex poll-response system, where the master polls one
node at a time, and that node responds before the master polls that node again or
moves onto another one. The only exception to this is broadcast, where the master
sends out a message without expecting a response. The format of the message in
each direction is as follows:

DLE STX Node SeqNo Data0 … DataN DLE ETX 16-bit Checksum

(3) The protocol is fault-tolerant in that it supports message retries, and the sequence

number (SeqNo above) is provided for this purpose. The master controls the
sequence number, and it is recommended that when the master starts, its first
message uses a sequence number of 0. Subsequent messages then increment the
sequence number wrapping round after 255 to 1 (not 0). Slaves respond with the
same sequence number as the message to which they are responding. If a
sequence number the same as the previous, then it was because the master did not
receive the reply correctly (it is retrying), and the last reply should be re-
transmitted without processing the incoming data. A sequence number of 0
indicates a start-up and slaves should therefore always process the message and
give a fresh response for this sequence number.

(4) In order for the DLE-STX and DLE-ETX sequences to be unique, any data byte in
the data portion of the message that is a DLE byte is followed by a further DLE
byte. The node and sequence number do not conform to this rule.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 19 of 51

(5) The checksum is a CRC-16 of all the bytes between (and not including) the DLE-
STX and the DLE-ETX.

(6) If a message arrives while one is being transmitted (and it is not listening to its
own outgoing message), then there is a sequencing problem. On the slave, it is
advisable not to respond in this situation, and on the master it is advisable to wait
for another response to come in before proceeding.

(7) In systems where the same transmission medium is used for transmission and
reception (such as two-wire RS485 or single-frequency radio) there may be a
problem with turnaround time, in that slaves may respond too quickly, before the
master has had a chance to switch hardware modes from transmission to reception.
This is particularly likely where the master is a non-embedded computer such as a
PC running Windows or Unix. In this situation, the slave must delay its response,
or separate media for transmit and received must be used, such as 4-wire RS485,
where the master transmits on one pair and receives on another.

(8) When communicating between dissimilar systems, issues of byte ordering and
structure packing become relevant. Routines are provided to normalise the data
format over the transmission medium, to solve this particular problem. A fully
packed (1-byte aligned) big-ending format is used (big-endian = high order byte
first). This is the easiest format to interpret on a communications analyser, and is
commonly used on many different types of network.

2.1.5.2 execAsyncBufferOut()

(1) Function prototype:

word execAsyncBufferOut (byte Node, byte *Raw, byte *TxBuf,
byte RawSize, byte SeqNo);

(2) Parameters: Node the target (recipient) node number
Raw the unformatted data to be transmitted
TxBuf the buffer to receive the formatted data
RawSize the size of the unformatted data
SeqNo the sequence number of the message

(3) Returns: the number of formatted bytes placed in TxBuf .

(4) This function puts the data to be transmitted into a protocol packet as per the
protocol described in section 2.1.5.1.

(5) The maximum size of the formatted data is 2*RawSize + 8 . This assumes that all
the data bytes are 0x10 (DLE). Clearly, this is unlikely to be the case in practice,
and a sufficiently large buffer should be provided to cover all eventualities of the
application in question.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 20 of 51

2.1.5.3 execAsyncByteIn()

(1) Function prototype:

boolean execAsyncByteIn (byte Value,
struct execAsyncStateDef *State, byte *Buffer);

(2) Parameters: Value the byte just received, to be processed
State the state and progress of the incoming data stream
Buffer the buffer receiving the incoming data

(3) Returns: true when a complete or corrupted message has been received, false
otherwise.

(4) This routine is designed to be called from within the receive interrupt routine,
where bytes are received one at a time.

(5) See section 2.5.6 for a description of State and how the information should be
used.

(6) This function places only processed bytes in the buffer provided. All the protocol
has been stripped by the time data has finished arriving in this buffer.

2.1.5.4 execPackData()

(1) Function prototype:

word execPackDataEx (byte *Target, byte *Source,
struct execStructDef VCONST *Descriptor);

word execPackData (byte *Buffer,
struct execStructDef VCONST *Descriptor);

(2) Parameters: Target the buffer where the packed data is to be saved
Source the buffer containing the data to be packed
Buffer the buffer for packing the data in-place
Descriptor an array of structure item description structures

(3) Returns: the size of the packed data in bytes.

(4) This routine reformats the data provided into a format for transmitting over a
network or a data link. All structure padding is removed and the bytes are re-
ordered (if necessary) to be big-endian. In the second version (above) of this
function, the transformation is done in-place, and the old data is therefore
effectively overwritten.

(5) The structure and layout of the descriptor array is described in section 2.5.6.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 21 of 51

2.1.5.5 execUnPackData()

(1) Function prototype:

word execUnPackDataEx (byte *Target, byte *Source,
struct execStructDef VCONST *Descriptor);

word execUnPackData (byte *Buffer,
struct execStructDef VCONST *Descriptor);

(2) Parameters: Target the buffer where the unpacked data is to be saved
Source the buffer containing the data to be unpacked
Buffer the buffer for unpacking the data in-place
Descriptor an array of structure item description structures

(3) Returns: the size of the unpacked data in bytes.

(4) This routine reformats the data provided from a format for transmitting over a
network or a data link into a format that corresponds to the structure local to the
CPU/compiler. The relevant structure padding is and the bytes are re-ordered (if
appropriate to the CPU) to be little-endian. In the second version (above) of this
function, the transformation is done in-place, and the old data is therefore
effectively overwritten.

(5) The structure and layout of the descriptor array is described in section 2.5.6.

2.1.6 System and Other Functions

2.1.6.1 execCheckIntegrity()

(1) Function prototype:

byte execCheckIntegrity(byte WhatToCheck);

(2) Parameters: WhatToCheck checks as defined below

(3) Returns: sum of failed checks as below (0 = passed).

(4) The following checks can be performed:

(a) Do all the (global) events belong to a valid state machine? (1)

(b) Do all the (global) events correspond to a valid local event within its state
machine? (2)

(c) Do all the events have valid default priorities? (4)

(d) Do all the state transitions in the state machines call up valid states for that
state machine (0 is invalid)? (8)

(e) Are all the queues contiguous? (16)

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 22 of 51

(f) Are all the queue counts and tails within the bounds of the queue sizes? (32)

(g) Are the current states of the state machines within the bounds of the number
of states in each state machine (0 is valid, state machine disabled)? (64)

(h) Are all the active timers part of the active timer queue? (128)

(5) When specifying what to check, pass 0 for all the checks to be performed, or add
together the figures in brackets after the questions above for the tests that are
required to be performed.

(6) For each test, if it fails, the number in brackets after the questions above are added
to the return value to give a failure category bitmap.

(7) Normally this function is called during the initialisation function to verify that the
application and its data tables have been built correctly, although the last two
checks verify the state of data in RAM and can be called at any time.

2.1.6.2 execGetPriority()

(1) Function prototype:

byte execGetPriority(void);

(2) Parameters: none

(3) Returns: the current priority level. If the system is idling, then 0 is returned. Note
that 0 is also the lowest priority.

2.1.6.3 execSafeCpuIdle()

(1) Function prototype:

void execSafeCpuIdle(void);

(2) Parameters: none

(3) Returns: nothing

(4) This function is designed to be called from within execAppIdle . It puts the CPU
in idle mode, checking first that there is no processing outstanding. It does this in
a single uninterruptable instruction sequence, so that it is impossible for an
interrupt routine to trigger off processing between deciding that idling is
appropriate and actually going into idle. If this were to happen, the system may
stall with pending events, possibly ending in a watchdog reset.

(5) One means of monitoring the level of CPU usage is to set a port pin just prior to
calling this and to reset it afterwards. Monitoring this pin on an oscilloscope will
then show the periods of time that the CPU is in idle.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 23 of 51

2.1.6.4 execTraceEvent()

(1) Function prototype:

boolean execTraceEvent(boolean Enable, word or byte Event);

(2) Parameters: Enable true to enable, false to disable
Event event number to trace (0 = global)

(3) Returns: true if it succeeded or false if it failed. It will fail if the event is not a
valid event number.

(4) This function is used to enable/disable event tracing on a particular event or all
events.

(5) Event 0 is used to globally enable/disable event tracing.

2.1.6.5 execUpdateChecksum()

(1) Function prototype:

word execUpdateChecksum(byte Value, word Checksum);

(2) Parameters: Value byte to update checksum with
Checksum checksum to be updated

(3) Returns: the updated checksum.

(4) This function implements a CRC-16 algorithm using a lookup table. It is used
principally by the asynchronous communications functions, but is available for
general usage.

(5) To calculate a CRC-16 checksum, call this routine repeatedly, iterating over the
buffer to be checksummed. Start the process with a checksum value of zero.

2.2 Application-Provided Routines

2.2.1.1 execAppCurrentTick()

(1) Function prototype:

word execAppCurrentTick(void);

(2) Parameters: None

(3) Returns: the current value of the main timer (the current timer tick).

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 24 of 51

(4) This function is not part of the executive but is user-supplied and called by the
executive when a timer is being activated.

(5) This function should query the hardware or other timer/counting mechanism used
to implement the timer system.

2.2.1.2 execAppFinish()

(1) Function prototype:

void execAppFinish(void);

(2) Parameters: None

(3) Returns: Nothing

(4) This function is not part of the executive but is user-supplied and called only when
running under Windows when the executive shuts down.

(5) It is not necessary to provide this function when running only in an embedded
environment.

(6) Use this function to de-initialise and release any resources allocated in
execAppInit() .

2.2.1.3 execAppIdle()

(1) Function prototype: void execAppIdle(void);

(2) This function is not part of the executive but is user-supplied and called by the
executive repeatedly while there are no events to process.

(3) This function can be used to set the processor into the idle state, or to toggle an
output pin or do other calculations to measure how much spare processing
bandwidth is available under different operating conditions.

2.2.1.4 execAppInit()

(1) Function prototype: void execAppInit(void);

(2) This function is not part of the executive but is user-supplied and called by the
executive before any other processing is performed.

(3) In this function, initialise hardware, state machines and perform all other
initialisation, and enable the interrupt system.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 25 of 51

(4) The executive includes a main() function, so do not create one in the application
program.

2.2.1.5 execAppPostExternalEvent()

(1) Function prototype: boolean execAppPostExternalEvent(word Event,
 byte Channel);

(2) Parameters: Event the event number to post
Channel the channel to post the event to

(3) Returns: true if the event was successfully posted.

(4) This function is not part of the executive but is user-supplied and called when an
event is posted by the application with a priority outside the range of the event
queues.

(5) The channel number is zero-based and is the ‘priority’ of the posted event minus
the number of event queues in the system.

(6) This function should pass on or use the event if it can, returning true, or returning
false if any of the parameters are out of range or if the action cannot be performed
for any reason.

2.2.1.6 execAppResyncTimer()

(1) Function prototype:

void execAppResyncTimer(word TickCount, boolean Ena ble);

(2) Parameters: TickCount the time at which the next timeout will occur
Enable true if there are timeouts pending

(3) Returns: nothing.

(4) This function is not part of the executive, but is user supplied.

(5) It is called when a timer is being set up or disabled, and is only called if the time at
which the next (pending) timeout was due to occur, has changed.

(6) If Enable is false, then there are no more pending timeouts, and hardware timers
may be shut down. No further timer interrupts are required (until this function is
called again with Enable true). Additionally, in this case, the value of TickCount
is arbitrary, and should not be used.

(7) If Enable is true, the hardware timer system should be reset or modified so that
the next timeout (timer interrupt) occurs at the new TickCount value, rather than
the one that was currently due.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 26 of 51

(8) In this way, this routine should co-operate with a user-supplied timer interrupt
routine which should determine when the selected timer has reached its timeout
value. At the point it determines this, it should call execProcessTimeouts() and
set up the next time to time out or disable itself (depending on the return value
from this function – see section 2.1.3.2).

2.2.1.7 execAppTrace()

(1) Function prototype:

void execAppTrace(byte BeforeState, byte AfterState ,

word or byte Event);

(2) Parameters: BeforeState state before the state transition
AfterState state after the state transition
Event event number causing the transition

(3) Returns: nothing.

(4) This function is not part of the executive, but is user supplied.

(5) It is called when event tracing is enabled (globally) and that particular event is
enabled for tracing. It is called after the state transition function just before the
current state is set to the next state.

(6) Typically this function will store the information passed in a circular buffer and/or
send it down a communications link.

(7) Care should be taken when tracing frequent events so as to avoid overloading the
system and affecting performance.

2.2.1.8 Timer Interrupt Routine

(1) See the description for execAppResyncTimer in section 2.2.1.6.

2.3 Running under Microsoft Windows

2.3.1 Important Points

(1) The entire executive will compile and run under Windows without modification,
and additionally requires the module ‘ExecWin.c’ which defines Windows-
specific functionality.

(2) The Windows-specific file has been designed for compilation under Microsoft
Visual C/C++, although it may work with other Windows C compilers.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 27 of 51

(3) The executive and application must be compiled and linked using the
multithreaded C libraries (a non-default option in Microsoft C/C++).

(4) The execAppIdle() function must call the execSafeCpuIdle() function, because
shutdown of the executive is performed from this function (and it also allows the
proper yielding of execution in the Windows pre-emptive multitasking
environment). Without this, the executive will not function properly under
Windows.

(5) The execAppCurrentTick() , execAppResyncTimer() functions and the
equivalent of the timer interrupt routine is implemented within the Windows
module and should not be defined in the application (use #ifndef _WIN32 in the
embedded application code to prevent any embedded application-provided
versions of these from being compiled under Windows). The size of the timer tick
(in integral multiples of 100 nanoseconds) is assigned when starting up the
executive under Windows, and thus an application designed for embedded use
may run in a simulated environment under Windows in real time. (Note that the
timer system under Windows 95, and subsequent DOS-based versions of
Windows, may be using with 18ms DOS timer interrupt. Although cumulative
errors may be minimal, precise short time delays may not be achievable).

(6) Use the execWinStart() and execWinQuit() functions to start and stop the
executive. The executive may be started and stopped on multiple occasions during
the run time of a program, and each time the executive is started, it completely re-
initialises itself.

(7) Once started, the executive runs in a background thread. This means that the
foreground part of the program, which started it, behaves towards it as if it were an
interrupt routine. Therefore, from the foreground thread (typically consisting of
Windows GUI event handling functions), only use functions which are safe to be
called from within interrupt routines, such as execPostEvent() , unless the entire
executive is explicitly locked.

(8) The executive may be locked and unlocked using execWinLockExec() and
execWinUnLockExec() . Locking the executive waits until the executive is idling
before locking out the executive’s thread. The executive’s thread is then blocked
until the executive is unlocked.

(9) Only one instance of the executive may run at any one time, and calling
execWinStart() multiple times without corresponding calls to execWinQuit()
will have no effect.

(10) If VCONST (variable constants) is defined in the compile options, then the executive
may be re-configured at run time. Clearly, it is inadvisable to alter the structure of
the application, which runs under the executive, while the executive is running.

(11) When running under Windows, the executive additionally requires the application
to provide the function execAppFinish() . This is called as the last item when the
executive shuts down, after all outstanding events have been processed.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 28 of 51

2.3.2 execWinLockExec()

(1) Function prototype:

(12) void execWinLockExec ();

(2) Parameters: none

(3) Returns: nothing

(4) This function is used to lock the executive thread so that another thread can safely
access any variables belonging to an application running under the executive.

(5) This function waits until the executive is idling before locking the thread and
returning. If the executive is continually processing events, then this function will
never return.

(6) For each call of this function, there must be a corresponding call to
execWinUnLockExec() , otherwise the executive will be permanently locked out
and will also never exit safely.

2.3.3 execWinStart()

(1) Function prototype:

boolean execWinStart (lword TickSize,
lword StackSize,
slword Priority);

(2) Parameters: TickSize the size of the timer tick in 100ns intervals
StackSize the size of the stack used by the executive’s thread
Priority the priority of the executive’s thread

(3) Returns: true if it succeeded or false if it failed. It will fail an instance of the
executive is already running or if any of the Windows resources used by the
executive fail to be created.

(4) This function starts the executive in a background thread in the Windows
environment.

(5) Setting a tick size of zero will allocate a 1 millisecond timer tick.

(6) Setting a stack size of zero will allocate a default stack size, which will be the
same as the main foreground application’s stack size.

(7) Setting a priority of zero will select ‘normal’ priority which is the default thread
priority under the process priority of the current application. Use the appropriate
Windows manifest constants for thread priority assignment.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 29 of 51

2.3.4 execWinQuit()

(1) Function prototype:

boolean execWinQuit (lword Timeout);

(2) Parameters: Timeout time in milliseconds to wait for termination

(3) Returns: true if it succeeded or false if it failed. It will fail if the executive is not
running.

(4) This function causes the executive to shut down in an orderly fashion. Firstly, the
timer thread shuts down so that no more timer events are posted, and then all
events are processed, before the executive itself finally exits.

(5) If the timeout time is reached before the executive has fully shutdown, its thread is
immediately terminated, and various items in the system associated with the thread
may be left in an indeterminate state. Therefore, timing out should be considered
as a very last resort, and the timeout should be very long or INFINITE (manifest
constant).

2.3.5 execWinUnLockExec()

(1) Function prototype:

void execWinUnLockExec();

(2) Parameters: none

(3) This function unlocks the executive thread and allows its event processing to
continue.

(4) It should be called after a corresponding call to execWinLockExec() .

2.4 Test Harness Facilities

2.4.1 Introduction

(1) Applications written using the State-Event Executive can be tested in a scripting or
other controlled test environment with the aid of the facilities described in this
section.

(2) A special version of various application-defined facilities is used to enable this, as
defined in ExecTest.c and TestDep.h . This allows timers and events to be
progressed under full control test facility itself, so that testing is not subject to the
passage of real time, and so that the state of a system’s internal data can be
verified at any point in its sequence of events.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 30 of 51

(3) Hence, the test facility implements execAppCurrentTick(),
execAppResyncTimer() and the safe CPU idle code. It also provides a means of
breaking in and out of the executive’s main loop and re-starting and application
after it has been running.

2.4.2 execTestAdvanceTimer()

(1) Function prototype:

void execTestAdvanceTimer (word TickCount);

(2) Parameters: TickCount time (in ticks) to manually advance time by

(3) Returns: nothing.

(4) This function advances the system timer by the specified increment, causing the
posting of events (in sequence) of any timers that time out during that time
increment.

(5) Note that the timer in the test environment is not tied to any real timer, and the
only way to progress simulated time is via this function.

2.4.3 execTestDoEvents()

(1) Function prototype:

word execWinQuit (word Events);

(2) Parameters: Events the maximum number of events to process

(3) Returns: the number of events actually processed.

(4) Call this function to run the main loop of the executive as many times as is
required to either process all the events in the event queues, or to process the
number of events specified, if this number is less than the number of events
pending.

(5) Calling this function does not perform any initialisation (execAppInit()).
execTestStart() should be called prior to any number of calls to this function.

(6) Call this function with a value of 0xffff to process all outstanding events.

2.4.4 execTestStart()

(1) Function prototype:

void execTestStart (void);

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 31 of 51

(2) Parameters: none.

(3) Returns: nothing.

(4) This function initialises the executive’s own internal data structures and calls the
application initialisation function (execAppInit()).

(5) It cannot initialise any of the application’s global (or other static) data. Therefore,
if this function is being called subsequent to exercising part of the system, then the
test environment must also re-initialise the application’s data.

2.5 Application-Provided Data Structures

2.5.1 Event Definition Table

(1) This is defined as follows:

struct execEventDef
{

byte DefaultPriority;
byte LocalEventNumber;

word or byte StateMachineNumber;
};

struct execEventDef execEvent[TOTAL_EVENTS];

(2) Each event is given a unique number in the system which is either a byte or a
word, depending on the number of events in the system (the event queues can be
defined to be bytes or words, depending on build options). This number is an
index into this table.

(3) The default priority refers to the queue which the event is normally posted to,
unless specified otherwise.

(4) The state machine number is an index into the state machine definition table. Each
event belongs to (only) one state machine and is effectively an input to that state
machine.

(5) The local event number is an index into the state transition table for that state
machine, and defines the event number within the state machine to which it
belongs.

(6) Event number 0 is a dummy event, which is not included in the table. It is never
used as such, but is used to indicate an event which has been cancelled (and hence
will not be processed). Therefore, the lowest event in the table is 1 (not 0).

2.5.2 Event Queue Definition Table

(1) This is defined as follows:

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 32 of 51

struct execQueueDef
{

word or byte NumberOfElements;

word or byte *QueueStart;
};

struct execQueueDef execQueue[TOTAL_QUEUES];

(2) The array execQueue is user-supplied, as are the queues themselves.

(3) The event queues are made up of a single byte or word array for all the queues (i.e.
the queues are contiguous). The size of this array, execEventQueue , is the total of
all the elements in all the queues.

(4) It is important that the queue start pointers are set up correctly so that one queue is
adjacent to the next, with the highest priority queue at the lowest address (i.e.
effectively in reverse order).

(5) The number of queues in the system is given by the constant TOTAL_QUEUES.

2.5.3 Input Event Definition Table

(1) An input event definition table is defined as follows:

struct execInputEvents
{

word or byte HighEvent[8];

word or byte LowEvent [8];
byte BitMask;

};

(2) One of these exists for each byte of input that is required to be processed using the
input event posting facility, and the names of these are user-defined. There need
be none at all if it is not required to generate events from inputs in this way.

(3) If there are bits in an input byte that need to be processed in a special manner, e.g.
at different scan rates, then more than one of these tables can exist for a given
input byte. The bit mask determines which bits are relevant.

(4) The high event defines the event number to be posted on a low to high transition,
and the low event defines the event number to be posted on a high to low
transition.

(5) The first elements of the High /LowEvent array (i.e. HighEvent[0] , LowEvent[0])
correspond to the least significant bit of the BitMask .

(6) An event number of 0 indicates that no event is to be posted. This is useful if it is
only required to post an event for the transition in one direction.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 33 of 51

2.5.4 State Machine Definition Table

(1) This is defined as follows:

struct execStateMachineDef
{

byte NumberOfStates;
byte NumberOfEvents;
struct execStateTransitionDef *TransitionTable;

};

struct execStateMachineDef execStateMachine[STATE_M ACHINES];

(2) The array execStateMachine is user-supplied, as are the state transition tables
themselves (see section 2.5.5 for the definition of TransitionTable , which also
defines the number of states and events).

(3) The number of state machines in the system is given by the constant
STATE_MACHINES.

2.5.5 State Transition Table

(1) Each element in a state transition table is defined as follows:

struct execStateTransitionDef
{

byte NextState;
byte Tag;
void (*EventFunction)(word Tag);

};

(2) A state transition table is a two-dimensional array of state transition elements as
follows:

execStateTransitionElement MyStateTable[STATES][EVE NTS];

(3) Therefore, in processing an event, the executive first looks up in the event
definition table to find out which state machine that event belongs to, and converts
the global event number into a local event. It takes the current state of the
appropriate state machine and does a lookup in the state transition table, based on
event and the current state, to find out the next state and event function. It calls
the event function and, when it returns, it sets the current state of that state
machine to the new state as looked up, or if the state transition has been
overridden by processing in the event function, to the overridden state.

(4) The NextState data item is a number based on 1 rather than 0 (i.e. the first state in
the table is state 1 not state 0). A zero state value is used to represent a disabled
state machine. When a state machine is enabled, it is set to a known starting state,
and a state machine may be disabled at any time.

(5) The event function pointer may be null, in which case the state transition is made,
but no function is called.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 34 of 51

(6) The purpose of Tag is to identify the state transition if the same function is called
for different transitions. This is placed in the global variable execTransitionTag
prior to calling the event function.

(7) The state transition tables are user-provided and may be given any names that may
be desired. MyStateTable is an example in this case.

(8) A valid entry must exist for each event in each state. It is recommended that for
‘invalid’ state-event combinations, that an exception notification function is called,
and a transition is defined to a state that would be most appropriate to cause
recovery from the situation.

2.5.6 Structure Definition Array

(1) Each element in a structure definition array is defined as follows:

struct execStructDef
{
 word Size;
 word Elements;
 word Offset;
};

(2) This structure is used to define the structure of a structure, or simple array or data
item, which is to be passed (in a portable way) over a communications link. The
pack/unpack facility uses this information (contained in ROM) to convert the
given structure into and back out of byte-packed big-endian format.

(3) A particular definition either consists of a single instance of this structure if it
describes a simple array or data item, or an array of these structures if a structure
or an array of structures is to be described.

(4) A series of macros are provided in order to simplify the construction of descriptor
arrays. These are:
(a) PACK_ELEMENT (structure, type, member, number)
(b) PACK_STRUCT (structure, type, member, number)
(c) PACK_SINGLE (type, number)
(d) PACK_STRUCT_START (structure, number)
(e) PACK_STRUCT_END ()

(5) The use of these macros is best described by example. To describe a simple array,
e.g. word myArray[5]; , use the following:

struct execStructDef myArrayDescriptor = PACK_SINGL E (word, 5);

(6) When describing structures, any level of nested structure arrays may be used. For
the following:

struct myStruct1
{
 byte m_S1E1[2];

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 35 of 51

 word m_S1E2;
};

struct myStruct2
{
 float m_S2E1;
 struct myStruct1 m_S2E2[3];
 word m_S2E3;
};

struct myStruct3
{
 byte m_S3E1[10];
 struct myStruct1 m_S3E2;
 slword m_S3E3;
 struct myStruct2 m_S3E4[4];
};

… the third compound structure is described as follows:

struct execStructDef myStruct3Descriptor[16] =
{
 PACK_STRUCT_START (struct myStruct3, 1),
 PACK_ELEMENT (struct myStruct3, byte, m_S3E1, 1 0),
 PACK_STRUCT (struct myStruct3, struct myStruct1 , m_S3E2, 1),
 PACK_ELEMENT (struct myStruct1, byte, m_S1E1, 2),
 PACK_ELEMENT (struct myStruct1, word, m_S1E2, 1),
 PACK_STRUCT_END (),
 PACK_ELEMENT (struct myStruct3, slword, m_S3E3, 1),
 PACK_STRUCT (struct myStruct3, struct myStruct2 , m_S3E4, 4),
 PACK_ELEMENT (struct myStruct2, float, m_S2E1 , 1),
 PACK_STRUCT (struct myStruct2, struct myStruc t1, m_S3E2, 3),
 PACK_ELEMENT (struct myStruct1, byte, m_S1E 1, 2),
 PACK_ELEMENT (struct myStruct1, word, m_S1E 2, 1),
 PACK_STRUCT_END (),
 PACK_ELEMENT (struct myStruct2, word, m_S2E3, 1),
 PACK_STRUCT_END (),
 PACK_STRUCT_END ()
};

(7) Note that the pack and unpack routines use recursion to handle nested structure
definitions. On microcontrollers where stack space is very short, then the use of
complex nested structures should be avoided, unless the microcontroller is an 8-bit
big-endian device (such as the 8051), in which case packing/unpacking is not
necessary on the target processor.

2.5.7 Incoming Asynchronous Data Stream State

(1) This block of data is defined as follows:

struct execAsyncStateDef
{
 word Checksum;
 enum {OK, Repeat, Overflow, Error, Hunting,
 InitialEscape, Node, Sequence, Receiving,
 EscapeSequence, Checksum1, Checksum2} Dec odeState;

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 36 of 51

 byte ThisNode;
 byte MessageNode;
 byte DataSize;
 byte ThisSequence;
 byte LastSequence;
};

(2) One of these blocks is required for each incoming asynchronous data stream. This
data is maintained by the function execAsyncByteIn() , with the exception of
ThisNode which is set up by the application. This function alters the data in this
structure so that, next time it is called, it is operating on the same data as previous.

(3) The Checksum is a CRC-16 checksum and represents the checksum of the
accumulated received data.

(4) The DecodeState is used to track the progress of the incoming data. When
reception of a message is completed or aborted, the function execAsyncByteIn()
returns true. When this happens and DecodeState is OK, then the message should
be processed and replied to (on a slave). If DecodeState is Repeat then the
previous reply should be transmitted, unless the message is received while
transmitting the previous reply, in which case it is advisable not to reply, so as to
allow the master to resynchronise. A DecodeState of Overflow or Error
indicates a corrupted incoming message which should not be replied to (since it
may be the node number which is corrupted – in which case a reply would be
expected from another node). Under these circumstances, the master will almost
certainly be expecting a reply and will not get one. However, this information
may be useful in gathering statistics about line quality. Note that an overflow
occurs if more than 255 bytes of message data are received (not including repeated
DLE’s), and this may indicate a software problem at the other end of the link.

(5) The DecodeState on the master is used similarly to the slave, except that the state
is used to determine whether to proceed with a new exchange or to do a retry on
the old.

(6) ThisNode is used to filter messages so that only messages for a particular node are
received. If the node number does not match then the whole message will be
ignored and the application will not be informed. ThisNode should be set to the
node number of the controller in question, or 255 if all messages are to be
received. An incoming node number of 255 is treated as broadcast, and the
incoming message will be registered regardless of the value of ThisNode . A
broadcast should not be replied to.

(7) The MessageNode is the node number embedded in the incoming message.
Normally this will be the same as ThisNode when a message has been received.
This may not be the case if either the incoming message node or ThisNode is set
to 255.

(8) The DataSize is the size of the data (in bytes) as it is placed in the application-
provided buffer (i.e. with leading and trailing data and double DLE’s removed). It
increments as the data is being received.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 37 of 51

(9) ThisSequence and LastSequence are used in determining whether the message is
a repeat or not. Note that after a correctly received message, these will always be
the same.

2.5.8 Other Values

(1) The following values, defined in the application header file “ExecApp.h”, are
required to be provided for the executive to operate correctly:

(a) TOTAL_QSIZE
(b) TOTAL_QUEUES
(c) TOTAL_EVENTS
(d) TOTAL_TIMERS
(e) STATE_MACHINES

(2) The file “ExecApp.h” is included by “Exec.h” and the values defined are used by
the executive when it is compiled. This means that the executive must be freshly
compiled with each change to this file, and cannot be distributed as a pre-compiled
library.

(3) By convention, “ExecApp.h” contains all the definitions required globally by the
application as well as the executive (see the example in section 4.2).

(4) Alternatively, the application header file may be given a different name, such as
“MyApp.h”, in which case the constant APP_HEADER must be defined as
“MyApp.h” in the compile options, typically appearing as
APP_HEADER="\"MyApp.h\"".

2.5.9 Generating Definitions Automatically

(1) The various data structures and definitions contain numerous cross-dependencies
which, if broken, will cause an application or, worse, part of it, to malfunction.
There is therefore a script-based facility to automatically insert the relevant code
into the appropriate source code files.

(2) This facility uses the ‘Python’ scripting language. Python is free software and can
be downloaded from the Internet at www.python.org. It comes complete with
Python interpreter (for Windows, most flavours of Unix and Macintosh), library
and comprehensive documentation. It is very easy for ‘C’ programmers to learn,
and the facility supplied with the State-Event Executive can easily be expanded to
generate other parts of application code (e.g. to create string tables to give event
trace data meaning).

(3) The automatically-generated parts of the code are contained in special comment-
delimited sections. The pattern of the delimiting is as follows: the start of a
section begins with //{{XXX(Y) , where XXX(Y) is a pseudo-macro distinguishing
one section from another. The section ends with //}} . The script generates these

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 38 of 51

sections internally and then searches all the specified source files, and matches
these sections in the existing files against the sections it has generated, substituting
in any changes. Thus, these sections must already pre-exist in the source files
before the tool is run (though they can be empty, ready for the tool to insert the
real code). Note that the tool only modifies the files with changes, and warns of
any sections that have not been found or appear in more than one place.

(4) The facility is driven from a main script which is defined by the application. This
scripts defines all the necessary table data and imports/calls functions in
‘ExecStuff.py’ which actually manipulates the data, stuffing the generated code
into the source files. Running the application-defined script with Python from the
command line results in the source files being updated, and a log being output to
the screen indicating what has been done. The easiest way to understand how the
application defined script is constructed is to examine and then modify the
example script (see section 4.1). Note that any errors will manifest themselves as
Python exceptions, which will abort the script.

(5) The following is a complete list of the pseudo-macros used by ExecStuff.py.

(a) Used by the function genStateTables() :
(i) EXEC_DEFINE() – this contains all the manifest constants and

declarations in the main application header file.
(ii) EXEC_DEFINITION() – this contains the overall definition of the set of

state machines
(iii) EXEC_DECLARE() – this contains the declarations of all the state

machines (for the appropriate header file).
(iv) EXEC_SM_DECLARE(sm) , where sm is the manifest constant for a

particular state machine – this contains the state declarations for a
given state machine.

(v) EXEC_SM_DEFINE(sm) , where sm is the manifest constant for a
particular state machine – this contains the state definition table for a
given state machine.

(b) Used by the function genTimers() :
(i) EXEC_TIMERS() – this contains the manifest constants of the timers.

(c) Used by the function genCommsStructures() :
(i) EXEC_COMMS_STRUCT(st) , where st is the structure tag of the

structure being defined – this contains the structure declaration for a
given structure.

(ii) EXEC_COMMS_DESCRIPTOR(st) , where st is the structure tag of the
structure being defined – this contains the communications packing
descriptor for the given structure.

(6) The function genFiles() within ExecStuff.py takes a list o fall these sections and
does the pattern matching and file stuffing.

(7) The function genStabReport() within ExecStuff.py generates an HTML file with
the state tables in a more readable tabular form.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 39 of 51

3. DESIGN AND IMPLEMENTATION DETAILS
OF THE EXECUTIVE

3.1 Posting Events

(1) Posting events is done by the function execPostPriorityEvent (execPostEvent
is a macro which calls execPostPriorityEvent with the default priority for the
event).

(2) This must work whether it is called from a state transition function or an interrupt,
including interrupts of higher priority that have interrupted other interrupt routines.
The posting function therefore has to lock out access to the event queue (by
suspending interrupts) during the critical parts of this operation.

(3) In order to prevent the “event retrieving” part of the executive from having to do
excessive searching, the posting routine also sets up a request to switch to a higher
priority, if necessary. This action also requires a resource lock.

(4) Hence the following global variables are maintained:

byte execRequestedLevel; // Requested priority leve l

byte execCurrentLevel; // Current priority level

byte execCurrentStateMachine;

byte execNextState;

3.2 Retrieving Events

(1) Retrieving events is done by polling the queues in order of priority, starting with
the level requested by the event posting routines. If there are no outstanding
events at that level, then the priority moves down one level, and the same exercise
is repeated until there is nothing outstanding, at which point the executive enters
into idling until an event is posted.

(2) The sequence of processing an event is as follows:

(a) Read the event number, and use it to look up the state machine and local
event number.

(b) Set the (global) state machine number to the retrieved value.

(c) If the current state number is zero (disabled), do not process this event, just
call the trace function and remove the event from the queue.

(d) Otherwise, from the state machine and local event numbers, find the state
transition.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 40 of 51

(e) Set the (global) next state value from the number in the state transition.

(f) Call the state transition function (if there is one), passing the appropriate
variables.

(g) Call the user’s trace function with the appropriate parameters.

(h) If the current state is not zero (i.e. disabled), set the current state of the state
machine to the next state value.

(3) Note that the event queue needs to be locked when retrieving an event.

(4) Note also that the general rule is that state machines should manipulate
themselves, primarily by making the transitions defined in the state transition
tables in response to events. There is provision to override default actions,
however.

3.3 Handling Timers

(1) The timer functionality requires an interface to a (16-bit) timer hardware resource,
and this interface is provided by the user (application).

(2) The intended implementation is that the timer should be set up to run for a given
length of time before it issues an interrupt, and which point the timer is set to run
for a new length of time, or disabled if the timer function is not in use (for the time
being). It is intended that the timer is a continuous free-running timer which
wraps round at FFFF. A compare register can then be set up to whatever value is
required.

(3) An alternative implementation involves the use of a timer tick interrupt. In this
case the timer value is maintained in software, and the timer comparison is also
done in software. This kind of implementation is typically used when the
scanning of inputs coincides with the timer tick.

(4) The main timer may count up, or it may optionally count down (define
COUNTDOWN when compiling).

3.4 Internal Data Structures

3.4.1 Event Trace Enable Table

(1) This is defined as follows:

byte execTraceTable[(TOTAL_EVENTS/8) + 1];

(2) This is actually a table of bits where a ‘1’ corresponds to tracing on that event
number to be enabled. Bit 0 is a global trace enable bit and this must be 1 for
tracing on any of the other events to be performed.

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 41 of 51

(3) This table is located in RAM and is controlled by debug/diagnostic facilities in the
application.

(4) When an event occurs and tracing for that event is enabled, the user defined
function execAppTrace is called (see section 2.2.1.7).

3.4.2 Current State Table

(1) This is defined as follows:

byte execCurrentState[STATE_MACHINES];

(2) This is defined in RAM and is used by the executive to maintain the current state
of each state machine.

3.4.3 Timer Queue

(1) This is defined as follows (and stored in RAM):

struct execTimerDef
{

word TriggerPoint;

word or byte EventToPost;

word or byte PreviousNumber;

word or byte NextNumber;
};

struct execTimerDef execTimer[TOTAL_TIMERS];

(2) All events are single shot, i.e. they disable themselves once they have triggered.

(3) The timer system is implemented using a single (word-sized) main timer which
counts up (or optionally down). When a timer is started, the time delay value is
added to the main timer value and stored as the trigger point. The event is then
posted when the main timer reaches the trigger point.

(4) The timer system is implemented using a doubly-linked-list queuing mechanism,
chronologically ordered. Setting a timer adds an entry to the queue, and it is
removed either when the timer times out or when it is killed.

3.4.4 Data Queues

(1) A data queue is defined as follows (and stored in RAM):

struct execDataQueue
{

word or byte Tail;

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 42 of 51

word or byte Count;
byte Data[];

};

(2) Each element of data in a queue is preceded by a size byte, which contains the
number of bytes in the data element which follows it.

(3) The data part of each queue is a circular queue, able to contain variable length
elements. Thus buffers are copied in and out of a queue and cannot be accessed
directly.

(4) Thus, a data queue is effectively a chain of buffers as follows:

Tail Count 1st
size

1st buffer … 2nd
size

2nd buffer … 3rd
size

3rd buffer … …

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 43 of 51

4. APPLICATION EXAMPLE

4.1 Script for Generating Source Code Tables

The following Python script, Widget.py, will generate the declarations and tables
for the example in the rest of this section, but the code examples that follow have
not been generated using this facility.

import sys
sys.path.append("..\\exec") # for ExecStuff, assum ing exec is in this directory
from ExecStuff import *

############# Complete set of definitions for exec, etc. ######################

Definition = {
 'Event Queues' : (('BACKGND_QUEUE', 128), ('LO W_QUEUE', 32),
 ('INTERMED_QUEUE', 32), ('TOP _QUEUE', 8)),

 'State Tables' : (
 ('smSingleTransition',
 ('SM_SINGLE_STATE', 'STAT E1'),
== ================================
 (('EV_STATUS_REQUEST', 'BACKGND_QUEUE'),
 ('STAT E1', 0, 'HandleStatusRequest')),
 (('EV_SCAN_TRIGGER', 'TOP_QUEUE'), ('STAT E1', 0, 'ScanInputs'))
),

 ('smWidgetTransition',
 ('SM_WIDGET_SEQUENCER', 'WIDGET_IDLE', 'EN TERING_SLOT', 'LEAVING_SLOT',
 'ENTERING_TRAY', ' AWAITING_REMOVAL', 'FAULTY'),
== =============================
 (('EV_DOOR_READY', 'INTERMED_QUE UE'),
 ('ENTERING_SLOT', 0, 'Dispe nseWidget'), # WIDGET_IDLE
 ('ENTERING_SLOT', 0, None), # ENTERING_SLOT
 ('LEAVING_SLOT', 0, None), # LEAVING_SLOT
 ('ENTERING_TRAY', 0, None), # ENTERING_TRAY
 ('ENTERING_SLOT', 0, 'Dispe nseWidget'), # AWAITING_REMOVAL
 ('FAULTY', 0, None)) , # FAULTY

 (('EV_WIDGET_IN_SLOT', 'INTERMED_QUE UE'),
 ('FAULTY', 1, 'LogWi dgetFault'), # WIDGET_IDLE
 ('LEAVING_SLOT', 0, None), # ENTERING_SLOT
 ('LEAVING_SLOT', 0, None), # LEAVING_SLOT
 ('FAULTY', 3, 'LogWi dgetFault'), # ENTERING_TRAY
 ('FAULTY', 3, 'LogWi dgetFault'), # AWAITING_REMOVAL
 ('FAULTY', 0, None)) , # FAULTY
 (('EV_SLOT_CLEAR', 'INTERMED_QUE UE'),
 ('WIDGET_IDLE', 0, None), # WIDGET_IDLE
 ('ENTERING_SLOT', 0, None), # ENTERING_SLOT
 ('ENTERING_TRAY', 0, 'Handl eWidget'), # LEAVING_SLOT
 ('ENTERING_TRAY', 0, None), # ENTERING_TRAY
 ('AWAITING_REMOVAL',0,None), # AWAITING_REMOVAL
 ('FAULTY', 0, None)) , # FAULTY
 (('EV_WIDGET_IN_TRAY', 'INTERMED_QUE UE'),
 ('FAULTY', 2, 'LogWi dgetFault'), # WIDGET_IDLE
 ('FAULTY', 2, 'LogWi dgetFault'), # ENTERING_SLOT
 ('AWAITING_REMOVAL',0,'StopW idget'), # LEAVING_SLOT
 ('AWAITING_REMOVAL',0,'StopW idget'), # ENTERING_TRAY
 ('AWAITING_REMOVAL',0,None), # AWAITING_REMOVAL
 ('FAULTY', 0, None)) , # FAULTY
 (('EV_TRAY_CLEAR', 'INTERMED_QUE UE'),
 ('WIDGET_IDLE', 0, None), # WIDGET_IDLE
 ('ENTERING_SLOT', 0, None), # ENTERING_SLOT
 ('LEAVING_SLOT', 0, None), # LEAVING_SLOT
 ('WIDGET_IDLE', 0, 'Recor dWidget'), # ENTERING_TRAY
 ('WIDGET_IDLE', 0, 'Recor dWidget'), # AWAITING_REMOVAL
 ('FAULTY', 0, None)) , # FAULTY
 (('EV_WIDGET_TIMEOUT', 'INTERMED_QUE UE'),
 ('WIDGET_IDLE', 0, None), # WIDGET_IDLE
 ('FAULTY', 10, 'LogWi dgetFault'), # ENTERING_SLOT
 ('FAULTY', 10, 'LogWi dgetFault'), # LEAVING_SLOT

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 44 of 51

 ('FAULTY', 10, 'LogWi dgetFault'), # ENTERING_TRAY
 ('WIDGET_IDLE', 0, 'Recor dWidget'), # AWAITING_REMOVAL
 ('WIDGET_IDLE', 0, None)) # FAULTY
),

 ('smDoorTransition',
 ('SM_DOOR_CONTROL', 'DOOR_CLOSED', 'DOOR_O PENING',
 'DOOR_OPEN', 'DOOR_CLO SING'),
== ===========================
 (('EV_BUTTON_PUSHED', 'LOW_QUEUE'),
 ('DOOR_OPENING', 0, 'OpenD oor'), # DOOR_CLOSED
 ('DOOR_OPENING', 0, None), # DOOR_OPENING
 ('DOOR_OPEN', 0, None), # DOOR_OPEN
 ('DOOR_OPENING', 0, 'OpenD oor')), # FAULTY
 (('EV_DOOR_OPEN', 'LOW_QUEUE'),
 ('DOOR_CLOSED', 0, None), # DOOR_CLOSED
 ('DOOR_OPEN', 0, 'Trigg erWidget'), # DOOR_OPENING
 ('DOOR_OPEN', 0, None), # DOOR_OPEN
 ('DOOR_CLOSING', 0, None)) , # FAULTY
 (('EV_DOOR_CLOSED', 'LOW_QUEUE'),
 ('DOOR_CLOSED', 0, None), # DOOR_CLOSED
 ('DOOR_OPENING', 0, None), # DOOR_OPENING
 ('DOOR_OPEN', 0, None), # DOOR_OPEN
 ('DOOR_CLOSING', 0, None)) , # FAULTY
 (('EV_DOOR_TIMEOUT', 'LOW_QUEUE'),
 ('DOOR_CLOSED', 0, None), # DOOR_CLOSED
 ('DOOR_CLOSING', 0, 'Close Door'), # DOOR_OPENING
 ('DOOR_CLOSING', 0, 'Close Door'), # DOOR_OPEN
 ('DOOR_CLOSING', 0, None)) # FAULTY
),
),

 'Timers' : ('WIDGET_TIMER', 'DOOR_TIMER'),

 'Comms' : (('boolean', 'byte', 'sbyte', 'word', 'sword', 'lword', 'slword'),

 (('StatusDef', 'StatusDefDescriptor' , 1),
 ('byte', 'ID', 1),
 ('lword', 'Flags', 2),
 ('DateTimeDef', 'Timestamp', 1)),

 (('DateTimeDef', None, 0),
 ('byte', 'Hour', 1),
 ('byte', 'Minute', 1),
 ('byte', 'Second', 1),
 ('byte', 'Day', 1),
 ('byte', 'Month', 1),
 ('word', 'Year', 1))
),

 'Source Files' : ('Widget.h', 'Widget_d.h', 'Wi dget00.c', 'Widget01.c',
 'Widget02.c', 'Wi dget03.c', 'Widget04.c')
}

genFiles(genStateTables (Definition['Event Queues'], Definition['State Tables']) +
 genTimers (Definition['Timers']) +
 genCommsStructures (Definition['Comms']),
 Definition['Source Files'])

genStabReport(Definition['State Tables'], 'WidgetS tates')

print 'Source code update complete.'

4.2 Application Definition Header File Data

The following is a section from Widget_d.h (which included by Exec.h for use in
the executive and the application, by defining the constant APP_HEADER to be
“Widget_d.h” in the compile options – this typically appears as
APP_HEADER="\"Widget_d.h\"" in the command line):

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 45 of 51

#ifdef __C166__
#include "C167Dep.h"
#else
#include "WinDep.h"
#endif

//{{EXEC_DEFINE() – if used, this would go here and be filled with the following:
//}}

/********************* Queues ******************* ***************************/

#define BACKGND_QSIZE 128
#define LOW_QSIZE 32
#define INTERMED_QSIZE 32
#define TOP_QSIZE 8
#define TOTAL_QSIZE (BACKGND_QSIZE + LOW_QSIZE + INTERMED_QSIZE + TOP_QSIZE)

#define BACKGND_QUEUE 0
#define LOW_QUEUE 1
#define INTERMED_QUEUE 2
#define TOP_QUEUE 3
#define TOTAL_QUEUES 4

/********************* Events ******************* ***************************/

#define NON_EVENT 0
#define EV_STATUS_REQUEST 1
#define EV_SCAN_TRIGGER 2
#define EV_DOOR_READY 3
#define EV_WIDGET_IN_SLOT 4
#define EV_SLOT_CLEAR 5
#define EV_WIDGET_IN_TRAY 6
#define EV_TRAY_CLEAR 7
#define EV_WIDGET_TIMEOUT 8
#define EV_BUTTON_PUSHED 9
#define EV_DOOR_OPEN 10
#define EV_DOOR_CLOSED 11
#define EV_DOOR_TIMEOUT 12

#define TOTAL_EVENTS 12

/********************* State Machines *********** ***************************/

#define SM_SINGLE_STATE 0
#define SM_WIDGET_SEQUENCER 1
#define SM_DOOR_CONTROL 2

#define STATE_MACHINES 3

#define SINGLE_EVENTS 2
#define WIDGET_STATES 6
#define WIDGET_EVENTS 6
#define DOOR_STATES 4
#define DOOR_EVENTS 4

/********************* Timers ******************* ***************************/

//{{EXEC_TIMERS() – if used, this would go here and be filled with the following:
//}}

#define WIDGET_TIMER 0
#define DOOR_TIMER 1

#define TOTAL_TIMERS 2

#define WIDGET_TIME 2000
#define DOOR_TIME 500

4.3 Application Main Header File Data

The following is a section from Widget.h:

extern VCONST struct execInputEventDef InputEvents;

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 46 of 51

//{{EXEC_DECLARE() – if used, this would go here an d be filled with:
//}}

extern VCONST struct execStateTransitionDef smSingl eTransition[SINGLE_EVENTS];
extern VCONST struct execStateTransitionDef
 smWidgetTransition[WIDG ET_STATES*WIDGET_EVENTS];
extern VCONST struct execStateTransitionDef
 smDoorTransition[DOOR_S TATES*DOOR_EVENTS];

4.4 Application-Provided Data Structures

The following is a section from Widget00.c (module 00 contains the definition
tables by convention):

#include "Exec.h"

//{{EXEC_DEFINITION() – if used, this would go here and be filled with:
//}}

// Event queue definitions
// -----------------------
VCONST struct execQueueDef execQueue[TOTAL_QUEUES] =
{
 {BACKGND_QSIZE ,&execEventQueue[0]},
 {LOW_QSIZE,&execEventQueue[BACKGND_QSIZE]},
 {INTERMED_QSIZE,&execEventQueue[BACKGND_QSIZE+L OW_QSIZE]},
 {TOP_QSIZE,&execEventQueue[BACKGND_QSIZE+LOW_QS IZE+INTERMED_QSIZE]}
};

// State machine definitions
// -------------------------
VCONST struct execStateMachineDef execStateMachine[STATE_MACHINES] =
{
 {1, SINGLE_EVENTS, smSingleTr ansition},
 {WIDGET_STATES, WIDGET_EVENTS, smWidgetTr ansition},
 {DOOR_STATES, DOOR_EVENTS, smDoorTran sition}
};

// Event definitions
// -----------------
VCONST struct execEventDef execEvent[TOTAL_EVENTS+1] =
{
 {0, 0, 0 }, // NON_EVENT
 {BACKGND_QUEUE, 0, SM_SINGLE_STATE}, // EV_STATUS_REQUEST
 {TOP_QUEUE, 1, SM_SINGLE_STATE}, // EV_SCAN_TRIGGER
 {INTERMED_QUEUE, 0, SM_WIDGET_SEQUENCER}, // EV_DOOR_READY
 {INTERMED_QUEUE, 1, SM_WIDGET_SEQUENCER}, // EV_WIDGET_IN_SLOT
 {INTERMED_QUEUE, 2, SM_WIDGET_SEQUENCER}, // EV_SLOT_CLEAR
 {INTERMED_QUEUE, 3, SM_WIDGET_SEQUENCER}, // EV_WIDGET_IN_TRAY
 {INTERMED_QUEUE, 4, SM_WIDGET_SEQUENCER}, // EV_TRAY_CLEAR
 {INTERMED_QUEUE, 5, SM_WIDGET_SEQUENCER}, // EV_WIDGET_TIMEOUT
 {LOW_QUEUE, 0, SM_DOOR_CONTROL}, // EV_BUTTON_PUSHED
 {LOW_QUEUE, 1, SM_DOOR_CONTROL}, // EV_DOOR_OPEN
 {LOW_QUEUE, 2, SM_DOOR_CONTROL}, // EV_DOOR_CLOSED
 {LOW_QUEUE, 3, SM_DOOR_CONTROL} // EV_DOOR_TIMEOUT
};

// Input event definitions
// -----------------------
VCONST struct execInputEventDef InputEvents =
{
 {EV_BUTTON_PUSHED, NON_EVENT, NON_EVENT , EV_DOOR_OPEN,
 NON_EVENT, EV_WIDGET_IN_SLOT, EV_WIDGET _IN_TRAY, NON_EVENT},

 {NON_EVENT, NON_EVENT, NON_EVENT , EV_DOOR_CLOSED,
 NON_EVENT, EV_SLOT_CLEAR, EV_TRAY_C LEAR, NON_EVENT},

 0x96 // Bit mask; high-going events (abo ve), low-going events
};

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 47 of 51

4.5 Application-Provided Routines

The following is a section from Widget01.c (module 01 contains the application-
provided exec. functions by convention):

#include <stddef.h>
#include "Exec.h"

void execAppInit (void)
{
// Perform integrity checks
// ------------------------
 if (execCheckIntegrity (0) != 0)
 {
 IdleMonitorPin = FALSE; // Signal sy stem as non-starter
 while (1); // Halt
 }
 else
 IdleMonitorPin = TRUE;

// Initialise the system
// ---------------------
 SetupIOandInterrupts();
 execEnableStateMachine (SM_SINGLE_STATE, 1);
 execEnableStateMachine (SM_WIDGET_SEQUENCER, 1) ;
 execEnableStateMachine (SM_DOOR_CONTROL, 1);
}

void execAppIdle(void)
{
 IdleMonitorPin = FALSE;
 execSafeCpuIdle(); // Returns after next i nterrupt has processed
 IdleMonitorPin = TRUE;
}

void execAppTrace (byte BeforeState, byte AfterStat e, word Event)
{
// Assumes maximum of 15 states and 64 events
// --
 EmitCodeSomewhere ((word)(((BeforeState&15)<< 10) +
 ((AfterState&15)<< 6) +
 Event&63));
}

#ifndef _WIN32

void TimerInterrupt (void) /* interrupt */
{
 word NextTick, CurrentTick = HwareTimerReg;

// Process the timeout(s)
// ----------------------
 NextTick = execProcessTimeouts(CurrentTick);

// Set up for next interrupt or disable
// ------------------------------------
 if (NextTick == CurrentTick)
 HwareTimerEnable = FALSE; // Disab le timer compare
 else
 HwareCompareReg = NextTick;
}

word execAppCurrentTick()
{
// Return current timer tick
// -------------------------
 return HwareTimerReg;
}

void execAppResyncTimer (word TickCount, boolean En able)
{
 HwareTimerEnable = FALSE; // Disable t imer compare

// Set up for next interrupt

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 48 of 51

// -------------------------
 HwareCompareReg = TickCount;

// Enable timer compare if required
// --------------------------------
 if (Enable);
 HwareTimerEnable = TRUE; // Enable t imer compare
}

#else

void execAppFinish()
{
}

#endif // _WIN32

4.6 State Machines

The following sections are from Widget02.c, Widget03.c, etc., and each contains
one state machine each. Module 02 contains the single-state state machine by
convention, which is a collection of all of the event handling functions for which
state information is irrelevant.

Widget02.c:

#include <stddef.h>
#include "Exec.h"

/********************* State transition table **** ***************************/

//{{EXEC_SM_DECLARE(SM_SINGLE_STATE) – if used, thi s would go here, filled with:
//}}

// States
// ------
#define STATE1 1 // The only valid state

// State transition functions
// --------------------------
static void HandleStatusRequest(void);
static void ScanInputs(void);

//{{EXEC_SM_DEFINE(SM_SINGLE_STATE) – if used, this would go here, filled with:
//}}

// State table
// -----------
VCONST struct execStateTransitionDef smSingleTransi tion[SINGLE_EVENTS] =
{
// STATE1:
// ------
 {STATE1, 0, HandleStatusRequest}, // EV_S TATUS_REQUEST
 {STATE1, 0, ScanInputs} // EV_S CAN_TRIGGER
};

/********************* State transition functions ***************************/

// Handle status request
// ---------------------
static void HandleStatusRequest (void)
{
 ReplyToRequest();
}

// Trigger events based on input pin transitions
// ---
static void ScanInputs (void)
{
 static byte OldInputs = 0x0000, ValidatedInputs = 0x0000;

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 49 of 51

 execPostInputEvents (PinPort, &OldInputs, &Vali datedInputs, &InputEvents);
}

Widget03.c; Widget sequencer state machine:

#include <stddef.h>
#include "Exec.h"

/********************* State transition table **** ***************************/

//{{EXEC_SM_DECLARE(SM_WIDGET_SEQUENCER) – if used, this would go here, with:
//}}

// States
// ------
#define WIDGET_IDLE 1
#define ENTERING_SLOT 2
#define LEAVING_SLOT 3
#define ENTERING_TRAY 4
#define AWAITING_REMOVAL 5
#define FAULTY 6

// State transition functions
// --------------------------
static void DispenseWidget(void);
static void HandleWidget(void);
static void StopWidget(void);
static void RecordWidget(void);
static void LogWidgetFault(void);

//{{EXEC_SM_DEFINE(SM_WIDGET_SEQUENCER) – if used, this would go here, with:
//}}

// State table
// -----------
VCONST struct execStateTransitionDef smWidgetTransi tion[WIDGET_STATES *
 WIDGET_EVENTS] =
{
// WIDGET_IDLE:
// -----------
 {ENTERING_SLOT, 0, DispenseWidget}, // EV_D OOR_READY
 {FAULTY, 1, LogWidgetFault}, // EV_W IDGET_IN_SLOT
 {WIDGET_IDLE, 0, NOFUNC}, // EV_S LOT_CLEAR
 {FAULTY, 2, LogWidgetFault}, // EV_W IDGET_IN_TRAY
 {WIDGET_IDLE, 0, NOFUNC}, // EV_T RAY_CLEAR
 {WIDGET_IDLE, 0, NOFUNC}, // EV_W IDGET_TIMEOUT

// ENTERING_SLOT:
// -------------
 {ENTERING_SLOT, 0, NOFUNC}, // EV_D OOR_READY
 {LEAVING_SLOT, 0, NOFUNC}, // EV_W IDGET_IN_SLOT
 {ENTERING_SLOT, 0, NOFUNC}, // EV_S LOT_CLEAR
 {FAULTY, 2, LogWidgetFault}, // EV_W IDGET_IN_TRAY
 {ENTERING_SLOT, 0, NOFUNC}, // EV_T RAY_CLEAR
 {FAULTY, 10, LogWidgetFault}, // EV_W IDGET_TIMEOUT

// LEAVING_SLOT:
// ------------
 {LEAVING_SLOT, 0, NOFUNC}, // EV_D OOR_READY
 {LEAVING_SLOT, 0, NOFUNC}, // EV_W IDGET_IN_SLOT
 {ENTERING_TRAY, 0, HandleWidget}, // EV_S LOT_CLEAR
 {AWAITING_REMOVAL,0,StopWidget}, // EV_W IDGET_IN_TRAY
 {LEAVING_SLOT, 0, NOFUNC}, // EV_T RAY_CLEAR
 {FAULTY, 10, LogWidgetFault}, // EV_W IDGET_TIMEOUT

// ENTERING_TRAY:
// -------------
 {ENTERING_TRAY, 0, NOFUNC}, // EV_D OOR_READY
 {FAULTY, 3, LogWidgetFault}, // EV_W IDGET_IN_SLOT
 {ENTERING_TRAY, 0, NOFUNC}, // EV_S LOT_CLEAR
 {AWAITING_REMOVAL,0,StopWidget}, // EV_WID GET_IN_TRAY
 {WIDGET_IDLE, 0, RecordWidget}, // EV_TRA Y_CLEAR

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 50 of 51

 {FAULTY, 10, LogWidgetFault}, // EV_WID GET_TIMEOUT

// AWAITING_REMOVAL:
// ----------------
 {ENTERING_SLOT, 0, DispenseWidget}, // EV_D OOR_READY
 {FAULTY, 3, LogWidgetFault}, // EV_W IDGET_IN_SLOT
 {AWAITING_REMOVAL,0,NOFUNC}, // EV_S LOT_CLEAR
 {AWAITING_REMOVAL,0,NOFUNC}, // EV_W IDGET_IN_TRAY
 {WIDGET_IDLE, 0, RecordWidget }, // EV_T RAY_CLEAR
 {WIDGET_IDLE, 0, RecordWidget }, // EV_W IDGET_TIMEOUT

// FAULTY:
// ------
 {FAULTY, 0, NOFUNC}, // EV_D OOR_READY
 {FAULTY, 0, NOFUNC}, // EV_W IDGET_IN_SLOT
 {FAULTY, 0, NOFUNC}, // EV_S LOT_CLEAR
 {FAULTY, 0, NOFUNC}, // EV_W IDGET_IN_TRAY
 {FAULTY, 0, NOFUNC}, // EV_T RAY_CLEAR
 {WIDGET_IDLE, 0, NOFUNC} // EV_W IDGET_TIMEOUT
};

/********************* State transition functions ***************************/

// Start by turning widget dispenser on
// ------------------------------------
static void DispenseWidget(void)
{
 WidgetDispenser (TRUE);
 execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);
}

// Turn widget dispenser off, widget handler on
// --
static void HandleWidget(void)
{
 WidgetDispenser (FALSE);
 WidgetHandler (TRUE);
 execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);
}

// Turn widget handler off
// -----------------------
static void StopWidget(void)
{
 WidgetHandler (FALSE);
 execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);
}

// Record the removal of a widget by sending a numb er
// -- --
static void RecordWidget(void)
{
 EmitCodeSomewhere (0x4000 + execTransitionTag);
 execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);
}

// Log fault by sending the fault number somewhere
// ---
static void LogWidgetFault(void)
{
 EmitCodeSomewhere (0x8000 + execTransitionTag);
}

Widget04.c; Door sequencer state machine:

#include <stddef.h>
#include "Exec.h"

/********************* State transition table **** ***************************/

//{{EXEC_SM_DECLARE(SM_DOOR_CONTROL) – if used, thi s would go here, with:
//}}

// States

State-Event Executive User Guide

© 1998 Barnabas Projects Limited Page 51 of 51

// ------
#define DOOR_CLOSED 1
#define DOOR_OPENING 2
#define DOOR_OPEN 3
#define DOOR_CLOSING 4

// State transition functions
// --------------------------
static void OpenDoor(void);
static void TriggerWidget(void);
static void CloseDoor(void);

//{{EXEC_SM_DEFINE(SM_DOOR_CONTROL) – if used, this would go here, with:
//}}

// State table
// -----------
VCONST struct execStateTransitionDef smDoorTransiti on[DOOR_STATES *
 DOOR_EVENTS] =
{
// DOOR_CLOSED:
// -----------
 {DOOR_OPENING, 0, OpenDoor}, // EV_B UTTON_PUSHED
 {DOOR_CLOSED, 0, NOFUNC}, // EV_D OOR_OPEN
 {DOOR_CLOSED, 0, NOFUNC}, // EV_D OOR_CLOSED
 {DOOR_CLOSED, 0, NOFUNC}, // EV_D OOR_TIMEOUT

// DOOR_OPENING:
// ------------
 {DOOR_OPENING, 0, NOFUNC}, // EV_B UTTON_PUSHED
 {DOOR_OPEN, 0, TriggerWidget}, // EV_D OOR_OPEN
 {DOOR_OPENING, 0, NOFUNC}, // EV_D OOR_CLOSED
 {DOOR_CLOSING, 0, CloseDoor}, // EV_D OOR_TIMEOUT

// DOOR_OPEN:
// ---------
 {DOOR_OPEN, 0, NOFUNC}, // EV_B UTTON_PUSHED
 {DOOR_OPEN, 0, NOFUNC}, // EV_D OOR_OPEN
 {DOOR_OPEN, 0, NOFUNC}, // EV_D OOR_CLOSED
 {DOOR_CLOSING, 0, CloseDoor}, // EV_D OOR_TIMEOUT

// DOOR_CLOSING:
// ------------
 {DOOR_OPENING, 0, OpenDoor }, // EV_B UTTON_PUSHED
 {DOOR_CLOSING, 0, NOFUNC}, // EV_D OOR_OPEN
 {DOOR_CLOSING, 0, NOFUNC}, // EV_D OOR_CLOSED
 {DOOR_CLOSING, 0, NOFUNC} // EV_D OOR_TIMEOUT
};

/********************* State transition functions ***************************/

// Activate the door opener to open it
// -----------------------------------
static void OpenDoor(void)
{
 EnergiseDoor (TRUE);
 execSetTimer (DOOR_TIMER, DOOR_TIME, EV_DOOR_TI MEOUT);
}

// Start the widget sequencer off
// ------------------------------
static void TriggerWidget(void)
{
 execPostEvent (EV_DOOR_READY);
}

// De-activate the door opener to close it
// ---------------------------------------
static void CloseDoor(void)
{
 EnergiseDoor (FALSE);
}

