State-Event Executive

User Guide

Barnabas Projects Limited
60 Naishcombe Hill
Wick
Nr. Bristol BS30 5QS

© 1998 Barnabas Projects Limited

State-Event Executive User Guide

Table of Contents

1. | ntroduction

11 Overview

1.2 How to Usethe Executive and How it Works

2. Application Program Interface

21 System Calls

2.1.1 State Machine Functions

2.1.1.1 execCancelStateTransition()

2.1.1.2 execDisableStateMachine()

2.1.1.3 execEnableStateMachine()

2.1.1.4 execGetCurrentState()

2.1.1.5 execGetNextState()

2.1.1.6 execGetStateMachine()

2.1.1.7 execSetCurrentState()

2.1.1.8 execSetNextState()

2.1.2 Event Processing Functions

2.1.2.1 execDeleteEvent()

2.1.2.2 execlsQueueFull()

2.1.2.3 execPostEvent()

2.1.2.4 execPostinputEvents()

2.1.2.5 execPostPriorityEvent()

2.1.3 Timer Functions

2.1.3.1 execKillTimer()

2.1.3.2 execProcessTimeouts()

2.1.3.3 execPurgeTimer()

2.1.3.4 execSetTimer()

2.1.4 Data Queue Functions

2.1.4.1 execDataQueueOKk()

2.1.4.2 execGetData()

2.1.4.3 execGetDataltems()

2.1.4.4 execGetDataSpace()

2.1.45 execPeekData()

2.1.4.6 execPendingData()

2.1.4.7 execPostData()

2.1.4.8 execPurgeData()

2.1.5 Asynchronous Communications Protocol Funstion

2.1.5.1 Important Points

2.1.5.2 execAsyncBufferOut()

2.1.5.3 execAsyncByteln()

2.1.5.4 execPackData()

2.1.5.5 execUnPackData()

2.1.6 System and Other Functions

2.1.6.1 execCheckintegrity()

2.1.6.2 execGetPriority()

© 1998 Barnabas Projects Limited

Page 2 of 51

State-Event Executive User Guide

2.1.6.3 execSafeCpuldle()

22

2.1.6.4 execTraceEvent()

23

2.1.6.5 execUpdateChecksum()

23

2.2 Application-Provided Routines

23

2.2.1.1 execAppCurrentTick()

23

2.2.1.2 execAppFinish()

24

2.2.1.3 execAppldle()

24

2.2.1.4 execApplnit()

24

2.2.1.5 execAppPostExternalEvent()

25

2.2.1.6 execAppResyncTimer()

25

2.2.1.7 execAppTrace()

26

2.2.1.8 Timer Interrupt Routine

26

2.3 Running under Microsoft Windows

26

2.3.1 Important Points

26

2.3.2 execWinLockExec()

28

2.3.3 execWinStart()

28

2.3.4 execWinQuit()

29

2.3.5 execWinUnLockExec()

29

2.4 Test Harness Facilities

29

2.4.1 Introduction

29

2.4.2 execTestAdvanceTimer()

30

2.4.3 execTestDoEvents()

30

2.4.4 execTestStart()

30

2.5 Application-Provided Data Structures

31

2.5.1 Event Definition Table

31

2.5.2 Event Queue Definition Table

31

2.5.3 Input Event Definition Table

32

2.5.4 State Machine Definition Table

33

2.5.5 State Transition Table

33

2.5.6 Structure Definition Array

34

2.5.7 Incoming Asynchronous Data Stream State

35

2.5.8 Other Values

37

2.5.9 Generating Definitions Automatically

37

3. Design and Implementation Details of the Executive

3.1 Posting Events

39

39

3.2 Retrieving Events

39

3.3 Handling Timers

40

34 Internal Data Structures

40

3.4.1 Event Trace Enable Table

40

3.4.2 Current State Table

41

3.4.3 Timer Queue

41

3.4.4 Data Queues

41

4. Application Example

43

4.1 Script for Generating Source Code Tables

43

4.2 Application Definition Header File Data

44

4.3 Application Main Header File Data

45

© 1998 Barnabas Projects Limited

Page 3 of 51

State-Event Executive User Guide

4.4 Application-Provided Data Structures 46
45 Application-Provided Routines 47
4.6 State Machines 48

© 1998 Barnabas Projects Limited Page 4 of 51

11

(1)

(2)

3)

(4)

(5)
(6)

(7)

(8)

(9)

State-Event Executive User Guide

1. INTRODUCTION

Overview

The State-Event Executive is a co-operative schmgldystem which can be
adapted to run on any suitable microprocessor. is lparticularly suited to
microcontrollers where RAM and particularly stagikase is very limited, and a
deterministic real-time response is required.

The key feature that distinguishes this from otkemels is that all procedures
must run to completion without calls to any ‘wdithction to wait for an event or
a time delay. This is the same as the normal ipectsed to design interrupt
routines. It requires an object-orientated apgna@cdesign, in much the same
way that modern Windows programs are designed péxbat this system is much
simpler, and the implementation is in C rather tGat.

The advantage of this approach is that it is véiigient in its use of the stack and
RAM. Task ‘waiting’ mid-way through in order tolav processing by a lower

priority task, would require a significantly moreroplex context switch. On

microcontrollers with very small stacks, this woweldtail significant manipulation

of the stack, which may involve the shifting ofd¢@egments in memory, making
pointers to local variables become invalid withawrning (a source of latent or
unpredictable bugs).

A further advantage is that all events are procksse a central point in the
system, which makes for powerful tracing and deingywithout the need to write
special code.

The system is table-driven which makes event resptimes very short.

The executive revolves around event queues whidkt ext different priority
levels. Processes post events which are thendaht®ugh the system and
handled by the appropriate procedures which demendhe state machine to
which that event belongs, and the state of th&e stachine.

Thus, in a system where all the event functions ratatively small, and the
longest is of a predictable length, then time-caitifunctions can be performed
deterministically without the need to resort to-preptive scheduling.

In a typical system, therefore, information is gaéu in interrupt routines, and
then processed at the appropriate priority by staéant processing routines. Note
that it is possible to run a system completely withinterrupts, though it usually
preferable to have at least one timer interruptineufor accurate scheduling of
events.

There are multiple versions of the executive coetpivith different combinations
of compile options. The options are:

(@) 8 or 16-bit events (define WORDQ to enable 16-béres)
(b) Constant or variable structure (define VCONST=viarable structure)

© 1998 Barnabas Projects Limited Page 5 of 51

1.2
(1)

(2)

)

(4)

(5)

Eve_pt

State-Event Executive User Guide

(c) 8 or 16-bit control variables (define BIGAPP for-ti variables)
(d) Down counting timer (define COUNTDOWN for down cang)
(e) Data queues of greater than 255 bytes (define BIGBA

How to Usethe Executive and How it Works

The first and most important feature that must jyereciated is that applications
written using the executive do not have a start #timmdad of execution in the
conventional sense. There is no ‘main’ functioth@ugh this actually exists as
part of the executive itself). Every item of presimg that is performing is done in
response to an event, with the exception of ins#ion which is performed in an
application-provided routine, called by the exegeion start-up.

Being table driven, an application does not mecelysist of executable code, but
also data tables of various kinds, most of whiah @esigned to run in ROM. In

addition to event-handling functions, each statehime has a state transition
table, which defines the operation of a particstate machine, and how it hangs
together.

In addition to state transition tables which defihe behaviour of state machines,
there is a single main set of tables which defireedvents and state machines, and
tie the system together. The system is also bgéther by a set of definitions
provided by the application header file (ExecApp.h)

Other than event-handling functions, there areralyvar of other routines that have
to be supplied in order for the application to fsstully link with the executive.
These functions handle initialisation, timers, systidle and debug trace data
forwarding.

The processing of an event and state transitiorbeahustrated as follows:

d : State
Update i transition
Event Current| . tables
Y,
it state T]
def|nb||t|on Sintes
table —
: : Events
Curtrent
state
table Next
. State
: ' state
<., Event | machin
numbe | |ocal Even_t .
el X functior Function
call

© 1998 Barnabas Projects Limited Page 6 of 51

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

State-Event Executive User Guide

For each state machine there are a fixed numbstatés defined. Events are all
pre-defined by the application, and each eventsfemuk (and only one) state
machine. For each combination of state and eveetgh state machine, a state to
change to is defined, and also a function to bledas part of the state transition.

No processing is performed without the posting wérgs, and a sequence of
events is normally triggered by interrupt activitige arrival of data of some sort.
Each event is posted at a particular priority, ements are processed on a first-in-
first-out basis and in order of priority.

In terms of execution priority, there are a confale number of priority levels
(up to 256). Each priority level has an event guassociated with it. Thus, if
there were 8 priority levels, there would be 8 évpreues.

If there is an event outstanding on a queue atghehipriority level, then the
current event processing routine runs to completsord after that processing is
switched to the higher priority queue. All eveat® processed on that queue
before returning to processing events on the aalgjneue.

The system is potentially capable of supportingtop255 (optionally 65535)
events and 256 (optionally 65536) state machinEsach state machine can be
disabled or in one of up to 255 states, and beuahygconnected to up to 256
events each.

All data structures that define a particular syst&micture (see section 2.5) are
user-supplied. In terms of linkage, the nameshef $tructures are referenced
within the executive, and structure definitionssexwithin the executive header
file, but the actual data is defined within the ead the application.

A timer system is included as part of the executiVeners are statically allocated
and are single shot (not periodic). A portion loé implementation of the timer
sub-system is provided by the application sinces ihardware dependent. The
system operates optimally when it uses a 16-bé-ftening timer in conjunction

with a 16-bit compare register, triggering an inipt upon match. The

application example (see section 4.5) shows a &meplementation. There may
be up to 256 (optionally 65536) timers in a system.

If an accurate periodic timer is required, thers itecommended to use a separate
timer interrupt. Systems that use a sample cydlkoften capture data in a
periodic interrupt routine. The posting of an a@viom this interrupt routine is
used to signal that data has been captured, anisthsed as the basis of the main
system sample period and scheduling.

To ensure the integrity of these data structutesgcommended to use manifest
constants (#defines) to define sizes of arrays, etc

Note that servicing of the watchdog is performetiveen the calling of event
functions, and therefore should not be done irags@ication.

For further clarification as to the structuringaf application, see the application
example in section 4.

© 1998 Barnabas Projects Limited Page 7 of 51

2.1
211

2111

(1)

(@)
3)
(4)

(5)

2112

(1)

(2)

®3)

(4)
(5)

(6)

2113

(1)

(2)

State-Event Executive User Guide

2. APPLICATION PROGRAM INTERFACE

System Calls

State Machine Functions
execCancel StateT ransition()

Function prototype:

void execCancelStateTransition(void);
Parameters: none
Returns: nothing

For the currently executing state machine, theecurstate number is copied to the
next state number.

This function should not be called from an intetruputine as it will cause
unpredictable results.

execDisableStateM aching()

Function prototype:

boolean execDisableStateMachine(word Or byte Machine);
Parameters: Machine state machine to be disabled

Returns: true if it succeeded or false if it faileld will fail if the parameter passed
is invalid.

This function sets this current state of a mackanzero (disabled).

This function can be called at any time (includirgm within the state machine to
be disabled).

The current state table should not be accessedtlglire

execEnableStateM aching()
Function prototype:

boolean execEnableStateMachine(word Or byte Machine,
byte InitialState);

Parameters: Machine state machine to be enabled

© 1998 Barnabas Projects Limited Page 8 of 51

@)

(4)

(5)

2114

(1)

(2)
3)

(4)
(5)

2115

(1)

(2)
3)

2116

(1)

(2)

State-Event Executive User Guide

InitialState initial state of that state machine

Returns: true if it succeeded or false if it failedt will fail if the parameters
passed are invalid or if that state machine isadlyeenabled, or if the state
machine was disabled while it was being processédch will always run to
completion) and a request to enable was made whilas still being processed.

The executive starts up with all the state machihesbled unless the current state
table is defined by the application as having othiial values.

If a controlled startup is required, then it isawonended to use this function.

execGetCurrentState()

Function prototype:

byte execGetCurrentState(word Or byte Machine);

Parameters: Machine state machine to get current state of

Returns: the state number of the specified statehima or O if an invalid state
machine number is passed (0 also indicates thatamachine is disabled).

This number is updated when the event processimgiibn completes.

The current state machine can be determined bygakecGetStateMachine

execGetNextState()

Function prototype:

byte execGetNextState(void);
Parameters: none

Returns: the state number that the currently bphnogessed state machine will be
set to when event processing function completdsnolstate machine is being
processed (this will only occur if this functiondalled from an interrupt routine or
the idle routine) then zero will be returned.

execGetStateM aching()
Function prototype:
word Or byte execGetStateMachine(void);

Parameters: none

© 1998 Barnabas Projects Limited Page 9 of 51

3)

2117

(1)

(2)

)

(4)

(5)

2118

(1)

(2)
3)

(4)

()

212

2121

(1)

State-Event Executive User Guide

Returns: the number of the state machine whictuigently being processed. If
no state machine is being processed (this will aagur if this function is called
from an interrupt routine, or if called from thepdipation idle) then the number of
the last state machine to have been processetevi#turned.

execSetCurrentState()

Function prototype:

boolean execSetCurrentState(word Or byte Machine, byte NewState);
Parameters: Machine state machine to set current state of
NewState the state to change the state machine to

Returns: true if it succeeded or false if it faileld will fail if the state specified is
not a valid state for the state machine speciftedf(the state machine number is
invalid).

Use this function for (temporary) debugging purgosenly. Use
execCancelStateTransition or execSetNextState to override the default state
transition from within a state transition functioklseexecEnableStateMachine

to set the initial state of a state machine.

Use of this function may give misleading resultguent tracing.

execSetNextState()

Function prototype:

boolean execSetNextState(byte NextState);
Parameters: NextState the state to divert the transition to

Returns: true if it succeeded or false if it faileld will fail if the state specified is
not a valid state for the current state machine.

This function is used to override the ‘next statafue in the state transition table,
in order to divert the state transition to anottate.

This function should not be called from an intetruputine as it will cause
unpredictable results.

Event Processing Functions
execDeleteEvent()

Function prototype:

© 1998 Barnabas Projects Limited Page 10 of 51

(2)
3)
(4)

(5)

(6)

2122

(1)

(@)
3)

2.1.2.3
1)

(2)

®3)

(4)
(5)

State-Event Executive User Guide

boolean execDeleteEvent(word Or byte Event);
Parameters: Event posted event to be cancelled
Returns: true if an event of that number was foamd cancelled or false if not.

This function searches all the queues from thedsgbpriority (event at the front
of the queue) to the lowest and substitutes antewember of zero in every
occurrence it finds.

It is recommended only to use this function if bes means of achieving this
result can be done (i.e. it is best not to postehent in the first place if it is
possible that it may need to be deleted). Thibeisause it comparatively time
consuming, although its efficiency is optimisedthg fact that the event queues
are contiguous, and therefore it just searchesitliee array of all the queues from
start to finish.

Typically, this operation is performed when thersewf an event is disabled (e.g.
an interrupt routine or timer) and it is requiredensure that there are no events
outstanding from that source.

execl sQueueFull()

Function prototype:

boolean execlsQueueFull(byte Priority);
Parameters: Priority indicates which queue

Returns: true if the queue is full (cannot be post® or false if it is not. The
same criteria are applied as pggcPostPriorityEvent

execPostEvent()

Function prototype:

boolean execPostEvent(word Or byte Event);
Parameters: Event event number to post

Returns: true if it succeeded or false if it faileld will fail if the queue is already
full or if the event is not valid.

Events are processed in order of the priority efdbheue on which it is placed.

If the event queue system only supports byte eyémén the high order byte of
the event is ignored.

© 1998 Barnabas Projects Limited Page 11 of 51

2124

(1)

(2)

3)

(4)
(5)

(6)

(7)

(8)
(9)

2125

(1)

(2)

3)

State-Event Executive User Guide

execPostl nputEvents()

Function prototype:

boolean execPostinputEvents(word NewlInputs,
word *OldInputs,
word *ValidatedInputs,
struct execlnputEvents *EventDefinitions);

Parameters: Newlnputs inputs at current poll (16 bits)
OldInputs pointer to inputs at last poll
ValidatedInputs pointer to filtered (validated) input states
EventDefinitions pointer to input event definition table

Returns: true if it succeeded or false if it failed will fail if any of the events in
the event definition table are invalid (all validemts will be posted, however), or
if any event could not be posted because its queseull.

This function is used to post events based on ti@uts contained in a word.

Only those bits indicated by 1's in the bit maskhe input event definition table
are affected. This is so that bits within a paifac input word can be processed at
different scan rates and priorities.

For each bit, the appropriate high or low evergaserated if that bit in the new
inputs is the same as in the old inputs but diffefeom the validated inputs. This
therefore implements single stage software debounce

If software debounce is not required, t@tlinputs point toNewlnputs as well,
hence any change in state will appear to have oettan successive iterations and
will hence caus#®alidatedinputs to change immediately on a change in state.

When the events have been poskesinputs is copied tadldinputs

If a queue cannot be posted to, then the old infartshe affected bits are not
updated to the new values. That is, it will givettier opportunities for the event
to be posted when this function is next called vathew set of inputs (provided
the relevant input does not change).

execPostPriorityEvent()

Function prototype:

boolean execPostPriorityEvent(word Or byte Event, byte Priority);
Parameters: Event event number to post
Priority gqueue priority to post to

Returns: true if it succeeded or false if it faile@ihe same criteria are applied as
per execPostEvent . Additionally, it will fail if an invalid queue ority is
passed.

© 1998 Barnabas Projects Limited Page 12 of 51

(4)

2.1.3

2131

(1)

(2)
3)

(4)

2132
1)

(2)
3)

(4)

(5)

2.1.33

(1)

(2)

State-Event Executive User Guide

The functionality is identical t@xecPostEvent , except that the event priority
(and hence event queue) is overridden.

Timer Functions

execKillTimer ()

Function prototype:

boolean execKillTimer(word Or byte Timer);

Parameters: Timer the number of the timer to disable (Kkill)

Returns: true if it succeeded or false if it failedt will fail if an invalid timer
number is passed (but not if the timer has alrdssin killed).

This disables the timer, but does not remove amdipg events posted by that
timer. UseexecPurgeTimer if this is required.

execProcessTimeouts()

Function prototype:

word execProcessTimeouts(word TickCount);

Parameters: TickCount the current main timer value

Returns: the tick count at which the next timeaudue to occur. If the value
returned is the same as the value passed, it isnfhleg all timers have timed out,
and the timer subsystem can be disabled.

This function is designed to be called from witkine timer interrupt routinenly.
For this reason there is no queue locking perfororethe timer queue.

This function may be called without detrimentaleets if no timeout is due. It
may also be called late, that is, if a small numdferck counts have passed since
the pending timeout has become due. For the dakecaracy and performance, it
is preferable, though, that this is called exaatlyhe point of timeout and only on
the point of timeout.

execPurgeTimer ()

Function prototype:

boolean execPurgeTimer(word Or byte Timer);

Parameters: Timer the number of the timer to disable (Kkill)

© 1998 Barnabas Projects Limited Page 13 of 51

3)

(4)

2134

(1)

(2)

)

(4)

(5)

(6)

214

2141

(1)

(2)

3)

State-Event Executive User Guide

Returns: true if it succeeded or false if it failedt will fail if an invalid timer
number is passed (but not if the timer has alrdsein killed).

This disables the timer and removes any pendingitevposted by that timer.
(Note that all occurrences of the event storedhasBventToPost for that timer
will be removed from the event queues. The impiirais that this event would be
unique to this timer, i.e. not used by any othemeti or function. Use
execKillTimer in preference to this function unless this actisendefinitely
required. This is because removing events frongtleaies is time consuming.

execSetTimer ()
Function prototype:

boolean execSetTimer(word Or byte Timer, word TimeDelay,
word Ofr byte Event);

Parameters: Timer the number of the timer to set
TimeDelay the value of the time delay
Event the event number to post on timeout

Returns: true if it succeeded or false if it failel will fail if an invalid timer or
event number is passed.

Setting a time delay or event number of O will bieathe timer. The macro
execKillTimer is provided for this purpose.

Calling an already-running timer will restart ittvithe new time delay value and
event.

Note that the timer units are user defined, andedépon the programming of
execAppTimerControl and its associated interrupt routine.

Data Queue Functions

execDataQueueOk()

Function prototype:

boolean execDataQueueOk (byte *Queue, word Or byte QueueSize);

Parameters: Queue the queue to get the data from
QueueSize the size of the queue in bytes

Returns: true if the queue is not corrupted. I waturn false if the queue’s
internal data structures (pointers, etc.) implyt thaeue entries exist outside the
memory extent of the queue or overlap one another.

© 1998 Barnabas Projects Limited Page 14 of 51

(4)

(5)

2142

(1)

(2)

)

(4)

(5)

(6)

2143

(1)

(2)

3)

(4)

State-Event Executive User Guide

The QueueSize is the size of th&ueue array in bytes, which is best obtained
using thesizeof() operator. This may be most easily done usingDWEAQ()
macro, wherebDATAQ(MyQueue) expands tiMyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined bgxtern byte MyQueue[x] Not extern byte
*MyQueue in the application’s header file.

For details of the queue implementation, see se&ié.4.

execGetData()

Function prototype:

byte execGetData (byte *Queue, word Or byte QueueSize,
byte *Buffer);
Parameters: Queue the queue to get the data from
QueueSize the size of the queue in bytes
Buffer the buffer in which to place the retrieved data

Returns: the number of bytes retrieved. It witbra O if there is nothing pending
on the data queue.

The buffer must be big enough to hold the dataensgd (no check is made). The
number of bytes retrieved will never exceed 255.

The QueueSize is the size of th&ueue array in bytes, which is best obtained
using thesizeof() operator. This may be most easily done usingDWEAQ()
macro, wherebDATAQ(MyQueue) expands tiMyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined bgxtern byte MyQueue[x] Not extern byte
*MyQueue in the application’s header file.

For details of the queue implementation, see se&ié.4.

execGetDatal tems()
Function prototype:

byte Orword execGetDataltems (byte *Queue,
word Or byte QueueSize);

Parameters: Queue the queue in which to count items
QueueSize the size of the queue in bytes

Returns: the number of items (individually postedférs) that are present on the
queue. It will return O if the queue is empty.

The QueueSize is the size of th&ueue array in bytes, which is best obtained
using thesizeof() = operator. This may be most easily done usingbiRAQ()

© 1998 Barnabas Projects Limited Page 15 of 51

(5)

2144

(1)

(2)

3)

(4)

(5)

2145

(1)

(2)

3)

(4)

(5)

State-Event Executive User Guide

macro, wherebATAQ(MyQueue) expands taMyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined bgxtern byte MyQueue[x] Nnot extern byte
*MyQueue in the application’s header file.

For details of the queue implementation, see se&ié.4.

execGetDataSpace()
Function prototype:
byte execGetDataSpace (byte *Queue, word Or byte QueuesSize);

Parameters: Queue the queue to examine for space
QueueSize the size of the queue in bytes

Returns: the number of bytes that can be postenltbetgiven data queue. It will
return O if the data queue is completely full.

The QueueSize is the size of th&ueue array in bytes, which is best obtained
using thesizeof() operator. This may be most easily done usingDieAQ()
macro, wherebDATAQ(MyQueue) expands tiMyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined bgxtern byte MyQueue[x] Not extern byte
*MyQueue in the application’s header file.

For details of the queue implementation, see se&ié.4.

execPeekData()

Function prototype:

byte execPeekData (byte *Queue, word Or byte QueueSize,
byte *Buffer, word Or byte ItemNumber);
Parameters: Queue the queue to get the data from
QueueSize the size of the queue in bytes
Buffer the buffer in which to place the retrieved data

ltemNumber the buffer from the front of the queue to inspect

Returns: the number of bytes retrieved. It witlira O if the item number does not
exist (i.e. is outside the bounds of the numbetenifis on the queue).

The buffer must be big enough to hold the dataensgd (no check is made). The
number of bytes retrieved will never exceed 255.

When the data is retrieved, only a copy of the dattaken. The queue itself
remains unaltered.

© 1998 Barnabas Projects Limited Page 16 of 51

(6)

(7)

(8)

2146

(1)

(2)
®3)

(4)

21.4.7

(1)

(2)

®3)

(4)

()

State-Event Executive User Guide

Item number O refers to the item that will be fetdhn the nextxecGetData()
call. Item numbers then follow sequentially aldhg queue from there, up to the
most recently posted.

The QueueSize is the size of th&ueue array in bytes, which is best obtained
using thesizeof() operator. This may be most easily done usingDiEAQ()
macro, whereDATAQ(MyQueue) expands tiMyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined bgxtern byte MyQueue[x] Nnot extern byte
*MyQueue in the application’s header file.

For details of the queue implementation, see se&ié.4.

execPendingData()

Function prototype:

byte execPendingData (byte *Queue);
Parameters: Queue the queue on which to check whether there is data

Returns: the number of bytes pending retrievabillt return 0O if there is nothing
pending on the data queue.

For details of the queue implementation, see se&ié.4.

execPostData()
Function prototype:

boolean execPostData (byte *Queue, word Or byte QueueSize,
byte *Buffer, byte Size);

Parameters: Queue the queue on which to post the data
QueueSize the size of the queue in bytes
Buffer the data to post
Size the number of bytes of data to post

Returns: true if it succeeded or false if it faileld will fail if there is not enough
space on the queue to post the data.

The QueueSize is the size of th&ueue array in bytes, which is best obtained
using thesizeof() operator. This may be most easily done usingDWEAQ()
macro, wherebATAQ(MyQueue) expands taMyQueue, sizeof(MyQueue) . Note
that MyQueue must be defined bgxtern byte MyQueue[x] Not extern byte
*MyQueue in the application’s header file.

For details of the queue implementation, see se&ié.4.

© 1998 Barnabas Projects Limited Page 17 of 51

21438

(1)

(2)
3)
(4)

2.15

2151

(1)

(2)

®3)

(4)

State-Event Executive User Guide

execPur geData()

Function prototype:

void execPurgeData (byte *Queue);
Parameters: Queue the queue to be purged
Returns: nothing.

This function resets a queue and deletes all itgecs. (In actual fact, only the
header data is reset. The remaining bytes areicin¢al.)

Asynchronous Communications Protocol Functions
Important Points

The protocol is designed for use on multi-drop miastave arrangements such as
RS485. The protocol supports a master and up % skdve nodes (although
RS485 physically supports only up to 32 nodes given link). The protocol also
supports broadcast, which is implemented by trattisigion a node number of
255. The protocol can also be used with a pouwgeiot arrangement such as
RS232.

The protocol uses a half-duplex poll-response systehere the master polls one
node at a time, and that node responds before #stempolls that node again or
moves onto another one. The only exception toishisoadcast, where the master
sends out a message without expecting a respaortse format of the message in
each direction is as follows:

| DLE | STX | Node | SeqNo | Data0 ... DataN | DLE | ETX | 16-bit Checksum]

The protocol is fault-tolerant in that it suppom®ssage retries, and the sequence
number (SegNo above) is provided for this purpddee master controls the
sequence number, and it is recommended that whemmtster starts, its first
message uses a sequence number of 0. Subsequsmage then increment the
sequence number wrapping round after 255 to 1@potSlaves respond with the
same sequence number as the message to which thesesponding. If a
sequence number the same as the previous, thexs iba&cause the master did not
receive the reply correctly (it is retrying), anddetlast reply should be re-
transmitted without processing the incoming datA. sequence number of O
indicates a start-up and slaves should therefarayal process the message and
give a fresh response for this sequence number.

In order for the DLE-STX and DLE-ETX sequences ¢éoumique, any data byte in
the data portion of the message that is a DLE Isytellowed by a further DLE
byte. The node and sequence number do not cornéothis rule.

© 1998 Barnabas Projects Limited Page 18 of 51

(5)

(6)

(7)

(8)

2152

(1)

(2)

3)
(4)

(5)

State-Event Executive User Guide

The checksum is a CRC-16 of all the bytes betwaad (ot including) the DLE-
STX and the DLE-ETX.

If a message arrives while one is being transmiféedl it is not listening to its
own outgoing message), then there is a sequencoigem. On the slave, it is
advisable not to respond in this situation, andh@enmaster it is advisable to wait
for another response to come in before proceeding.

In systems where the same transmission mediumad t@ transmission and
reception (such as two-wire RS485 or single-fregyeradio) there may be a
problem with turnaround time, in that slaves magpond too quickly, before the
master has had a chance to switch hardware maolestifansmission to reception.
This is particularly likely where the master is@rembedded computer such as a
PC running Windows or Unix. In this situation, tslave must delay its response,
or separate media for transmit and received musitskd, such as 4-wire RS485,
where the master transmits on one pair and receivesiother.

When communicating between dissimilar systems,essof byte ordering and
structure packing become relevant. Routines apgiged to normalise the data
format over the transmission medium, to solve pasticular problem. A fully
packed (1-byte aligned) big-ending format is udeid-éndian = high order byte
first). This is the easiest format to interpretaonommunications analyser, and is
commonly used on many different types of network.

execAsyncBuffer Out()

Function prototype:

word execAsyncBufferOut (byte Node, byte *Raw, byte *TxBuf,
byte RawSize, byte SegNo);
Parameters: Node the target (recipient) node number
Raw the unformatted data to be transmitted
TxBuf the buffer to receive the formatted data
RawsSize the size of the unformatted data
SegNo the sequence number of the message

Returns: the number of formatted bytes placetkBuf .

This function puts the data to be transmitted iatprotocol packet as per the
protocol described in section 2.1.5.1.

The maximum size of the formatted data*®awsSize + 8 . This assumes that all
the data bytes are 0x10 (DLE). Clearly, this iskety to be the case in practice,
and a sufficiently large buffer should be providedcover all eventualities of the
application in question.

© 1998 Barnabas Projects Limited Page 19 of 51

2.15.3
1)

(2)

3)

(4)

(5)

(6)

2154

(1)

(2)

3)
(4)

(5)

State-Event Executive User Guide

execAsyncByteln()

Function prototype:

boolean execAsyncByteln (byte Value,
struct execAsyncStateDef *State, byte *Buffer);

Parameters: Value the byte just received, to be processed
State the state and progress of the incoming datarstrea
Buffer the buffer receiving the incoming data

Returns: true when a complete or corrupted mesbkagebeen received, false
otherwise.

This routine is designed to be called from withie treceive interrupt routine,
where bytes are received one at a time.

See section 2.5.6 for a descriptionspite and how the information should be
used.

This function places only processed bytes in tHéebprovided. All the protocol
has been stripped by the time data has finishédragrin this buffer.

execPackData()

Function prototype:

word execPackDataEx (byte *Target, byte *Source,
struct execStructDef VCONST *Descriptor);

word execPackData (byte *Buffer,
struct execStructDef VCONST *Descriptor);

Parameters: Target the buffer where the packed data is to be saved
Source the buffer containing the data to be packed
Buffer the buffer for packing the data in-place
Descriptor an array of structure item description structures

Returns: the size of the packed data in bytes.

This routine reformats the data provided into amfar for transmitting over a

network or a data link. All structure padding emoved and the bytes are re-
ordered (if necessary) to be big-endian. In theoseé version (above) of this

function, the transformation is done in-place, aheé old data is therefore

effectively overwritten.

The structure and layout of the descriptor arrajeiscribed in section 2.5.6.

© 1998 Barnabas Projects Limited Page 20 of 51

2155

(1)

(2)

3)
(4)

(5)

2.1.6

216.1

(1)

(2)
3)
(4)

State-Event Executive User Guide

execUnPackData()

Function prototype:

word execUnPackDataEx (byte *Target, byte *Source,
struct execStructDef VCONST *Descriptor);

word execUnPackData (byte *Buffer,
struct execStructDef VCONST *Descriptor);

Parameters: Target the buffer where the unpacked data is to be saved
Source the buffer containing the data to be unpacked
Buffer the buffer for unpacking the data in-place
Descriptor an array of structure item description structures

Returns: the size of the unpacked data in bytes.

This routine reformats the data provided from amiatr for transmitting over a

network or a data link into a format that correggoio the structure local to the
CPU/compiler. The relevant structure padding id #re bytes are re-ordered (if
appropriate to the CPU) to be little-endian. Ie gecond version (above) of this
function, the transformation is done in-place, ahé old data is therefore

effectively overwritten.

The structure and layout of the descriptor arrajeiscribed in section 2.5.6.

System and Other Functions
execCheckIntegrity()

Function prototype:

byte execChecklntegrity(byte WhatToCheck);

Parameters: WhatToCheck checks as defined below
Returns: sum of failed checks as below (0 = passed)

The following checks can be performed:

(@) Do all the (global) events belong to a valid stagechine? (1)

(b) Do all the (global) events correspond to a valichloevent within its state
machine? (2)

(c) Do all the events have valid default prioritiesy (4

(d) Do all the state transitions in the state machoadsup valid states for that
state machine (0 is invalid)? (8)

(e) Are all the queues contiguous? (16)

© 1998 Barnabas Projects Limited Page 21 of 51

(5)

(6)

(7)

2.1.6.2

(1)

(2)
3)

2.1.6.3

(1)

(2)

®3)
(4)

(5)

State-Event Executive User Guide

(H Are all the queue counts and tails within the bauofidthe queue sizes? (32)

(g) Are the current states of the state machines witierbounds of the number
of states in each state machine (0 is valid, stetehine disabled)? (64)

(h) Are all the active timers part of the active tingereue? (128)

When specifying what to check, pass 0 for all thecks to be performed, or add
together the figures in brackets after the questiabove for the tests that are
required to be performed.

For each test, if it fails, the number in bracledter the questions above are added
to the return value to give a failure category laigm

Normally this function is called during the iniisdtion function to verify that the
application and its data tables have been builtectly, although the last two
checks verify the state of data in RAM and candiked at any time.

execGetPriority()
Function prototype:
byte execGetPriority(void);
Parameters: none

Returns: the current priority level. If the systemdling, then O is returned. Note
that O is also the lowest priority.

execSafeCpul dle()

Function prototype:

void execSafeCpuldle(void);
Parameters: none
Returns: nothing

This function is designed to be called from witbkecAppldle . It puts the CPU
in idle mode, checking first that there is no pssiag outstanding. It does this in
a single uninterruptable instruction sequence, &t it is impossible for an
interrupt routine to trigger off processing betwedeciding that idling is
appropriate and actually going into idle. If thigre to happen, the system may
stall with pending events, possibly ending in achdbg reset.

One means of monitoring the level of CPU usage iset a port pin just prior to
calling this and to reset it afterwards. Monitagrithis pin on an oscilloscope will
then show the periods of time that the CPU isli@.id

© 1998 Barnabas Projects Limited Page 22 of 51

2164

(1)

(2)

)

(4)

(5)

2165

(1)

(2)

3)

(4)

(5)

2.2

2211

(1)

(2)
3)

State-Event Executive User Guide

execT raceEvent()

Function prototype:

boolean execTraceEvent(boolean Enable, word Or byte Event);
Parameters: Enable true to enable, false to disable
Event event number to trace (0 = global)

Returns: true if it succeeded or false if it failett will fail if the event is not a
valid event number.

This function is used to enable/disable event mga@n a particular event or all
events.

Event O is used to globally enable/disable evexting.

execUpdateChecksum()

Function prototype:

word execUpdateChecksum(byte Value, word Checksum);

Parameters: Value byte to update checksum with
Checksum checksum to be updated

Returns: the updated checksum.

This function implements a CRC-16 algorithm usintp@kup table. It is used
principally by the asynchronous communications fioms, but is available for
general usage.

To calculate a CRC-16 checksum, call this routeygeatedly, iterating over the
buffer to be checksummed. Start the process wathegksum value of zero.

Application-Provided Routines
execAppCurrentTick()

Function prototype:

word execAppCurrentTick(void);
Parameters: None

Returns: the current value of the main timer (theent timer tick).

© 1998 Barnabas Projects Limited Page 23 of 51

(4)

(5)

2212

(1)

(2)
@)
(4)

(5)

(6)

2213
1)
(2)

®3)

2214
(1)
(2)

3)

State-Event Executive User Guide

This function isnot part of the executive but is user-supplied andedaby the
executive when a timer is being activated.

This function should query the hardware or othereticounting mechanism used
to implement the timer system.

execAppFinish()
Function prototype:
void execAppFinish(void);
Parameters: None
Returns: Nothing

This function isnot part of the executive but is user-supplied antedadnly when
running under Windows when the executive shuts down

It is not necessary to provide this function whenmning only in an embedded
environment.

Use this function to de-initialise and release amgources allocated in
execApplnit()

execAppldle)
Function prototype: void execAppldle(void);

This function isnot part of the executive but is user-supplied andedaby the
executive repeatedly while there are no eventsdogss.

This function can be used to set the processortivdadle state, or to toggle an
output pin or do other calculations to measure howch spare processing
bandwidth is available under different operatingditons.

execApplnit()
Function prototype: void execApplnit(void);

This function isnot part of the executive but is user-supplied andedaby the
executive before any other processing is performed.

In this function, initialise hardware, state madsnand perform all other
initialisation, and enable the interrupt system.

© 1998 Barnabas Projects Limited Page 24 of 51

(4)

2215

(1)

(2)

3)

(4)

(5)

(6)

2216

(1)

(2)

@)
(4)
(5)

(6)

(7)

State-Event Executive User Guide

The executive includesraain() function, so do not create one in the application
program.

execAppPostExter nalEvent()

Function prototype: boolean execAppPostExternalEvent(word Event,
byte Channel);

Parameters: Event the event number to post
Channel the channel to post the event to
Returns: true if the event was successfully posted

This function isnot part of the executive but is user-supplied antedalvhen an
event is posted by the application with a priootytside the range of the event
queues.

The channel number is zero-based and is the ‘priaf the posted event minus
the number of event queues in the system.

This function should pass on or use the eventdéit, returning true, or returning
false if any of the parameters are out of rangé thie action cannot be performed
for any reason.

execAppResyncTimer ()

Function prototype:

void execAppResyncTimer(word TickCount, boolean Ena ble);
Parameters: TickCount the time at which the next timeout will occur
Enable true if there are timeouts pending

Returns: nothing.
This function isnot part of the executive, but is user supplied.

It is called when a timer is being set up or disdbknd is only called if the time at
which the next (pending) timeout was due to ockas changed.

If Enable is false, then there are no more pending timeaurtd, hardware timers
may be shut down. No further timer interrupts @guired (until this function is
called again wittenable true). Additionally, in this case, the valueTafkCount

is arbitrary, and should not be used.

If Enable is true, the hardware timer system should be r@setodified so that
the next timeout (timer interrupt) occurs at thevmackCount value, rather than
the one that was currently due.

© 1998 Barnabas Projects Limited Page 25 of 51

(8)

2217

(1)

(2)

3)

(4)

(5)

(6)

(7)

2218

(1)

2.3
231
1)

(2)

State-Event Executive User Guide

In this way, this routine should co-operate witlhuser-supplied timer interrupt
routine which should determine when the selecteritinas reached its timeout
value. At the point it determines this, it shoalll execProcessTimeouts() and
set up the next time to time out or disable it¢ddpending on the return value
from this function — see section 2.1.3.2).

execAppTrace()

Function prototype:

void execAppTrace(byte BeforeState, byte AfterState ,
word Or byte Event);

Parameters: BeforeState state before the state transition
AfterState state after the state transition
Event event number causing the transition

Returns: nothing.
This function isnot part of the executive, but is user supplied.

It is called when event tracing is enabled (glofa#ind that particular event is
enabled for tracing. It is called after the st@mgmsition function just before the
current state is set to the next state.

Typically this function will store the informatigmassed in a circular buffer and/or
send it down a communications link.

Care should be taken when tracing frequent eventsdo avoid overloading the
system and affecting performance.

Timer Interrupt Routine

See the description fekecAppResyncTimer in section 2.2.1.6.

Running under Microsoft Windows

I mportant Points

The entire executive will compile and run under Wdws without modification,
and additionally requires the module ‘ExecWin.c’ igth defines Windows-
specific functionality.

The Windows-specific file has been designed for pitetion under Microsoft
Visual C/C++, although it may work with other Wingle C compilers.

© 1998 Barnabas Projects Limited Page 26 of 51

3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

State-Event Executive User Guide

The executive and application must be compiled dmited using the
multithreaded C libraries (a non-default optioMitrosoft C/C++).

TheexecAppldle() function must call thexecSafeCpuldie() function, because
shutdown of the executive is performed from thisction (and it also allows the
proper vyielding of execution in the Windows pre-¢ivgp multitasking
environment). Without this, the executive will na@inction properly under
Windows.

The execAppCurrentTick() , execAppResyncTimer() functions and the
equivalent of the timer interrupt routine is implkemed within the Windows
module and should not be defined in the applicafise#ifndef _WIN32 in the
embedded application code to prevent any embeddudication-provided
versions of these from being compiled under Windowhe size of the timer tick
(in integral multiples of 100 nanoseconds) is assig when starting up the
executive under Windows, and thus an applicatiosighed for embedded use
may run in a simulated environment under Windowseml time. (Note that the
timer system under Windows 95, and subsequent D&38eb versions of
Windows, may be using with 18ms DOS timer interruglthough cumulative
errors may be minimal, precise short time delayg nw be achievable).

Use theexecWinStart() and execwinQuit() functions to start and stop the
executive. The executive may be started and stbppenultiple occasions during
the run time of a program, and each time the exexig started, it completely re-
initialises itself.

Once started, the executive runs in a backgrounshth This means that the
foreground part of the program, which startedetydves towards it as if it were an
interrupt routine. Therefore, from the foregrouhdead (typically consisting of

Windows GUI event handling functions), only usedtions which are safe to be
called from within interrupt routines, such e@cPostEvent() , unless the entire

executive is explicitly locked.

The executive may be locked and unlocked usikgcWinLockExec() — and
execWinUnLockExec() . Locking the executive waits until the executisedling
before locking out the executive’s thread. Thecekige’s thread is then blocked
until the executive is unlocked.

Only one instance of the executive may run at ang ¢éime, and calling
execWinStart() multiple times without corresponding calls dgecwinQuit()
will have no effect.

If vCONST(variable constants) is defined in the compildmd, then the executive
may be re-configured at run time. Clearly, itnadvisable to alter the structure of
the application, which runs under the executivejemine executive is running.

When running under Windows, the executive addifigrnmaquires the application
to provide the functioexecAppFinish() . This is called as the last item when the
executive shuts down, after all outstanding evhatse been processed.

© 1998 Barnabas Projects Limited Page 27 of 51

2.3.2
(1)
(12)
(2)
3)
(4)

(5)

(6)

2.3.3
)

(2)

3)

(4)

(5)
(6)

(7)

State-Event Executive User Guide

execWinL ockExec()
Function prototype:
void execWinLockExec ();
Parameters: none
Returns: nothing

This function is used to lock the executive threadhat another thread can safely
access any variables belonging to an applicationing under the executive.

This function waits until the executive is idlingefore locking the thread and
returning. If the executive is continually prodegsevents, then this function will
never return.

For each call of this function, there must be aresponding call to
execWinUnLockExec() , otherwise the executive will be permanently |latleit
and will also never exit safely.

execWinStart()

Function prototype:

boolean execWinStart (lword TickSize,
lword StackSize,
slword Priority);

Parameters: TickSize the size of the timer tick in 100ns intervals
StackSize the size of the stack used by the executive’'sathre
Priority the priority of the executive’s thread

Returns: true if it succeeded or false if it failedt will fail an instance of the
executive is already running or if any of the Wingoresources used by the
executive fail to be created.

This function starts the executive in a backgrouhdead in the Windows
environment.

Setting a tick size of zero will allocate a 1 nséicond timer tick.

Setting a stack size of zero will allocate a ddfathck size, which will be the
same as the main foreground application’s staek siz

Setting a priority of zero will select ‘normal’ prity which is the default thread

priority under the process priority of the currapiplication. Use the appropriate
Windows manifest constants for thread priority gssient.

© 1998 Barnabas Projects Limited Page 28 of 51

2.34
1)

(2)
@)

(4)

(5)

2.35
)

(2)
3)

(4)

24
24.1
(1)

(2)

State-Event Executive User Guide

execWinQuit()

Function prototype:

boolean execWinQuit (lword Timeout);

Parameters: Timeout time in milliseconds to wait for termination

Returns: true if it succeeded or false if it failed will fail if the executive is not
running.

This function causes the executive to shut dowanirorderly fashion. Firstly, the
timer thread shuts down so that no more timer even¢ posted, and then all
events are processed, before the executive itsalfyf exits.

If the timeout time is reached before the executias fully shutdown, its thread is
immediately terminated, and various items in th&tesy associated with the thread
may be left in an indeterminate state. Thereftin@ing out should be considered
as a very last resort, and the timeout should g kg or INFINITE (manifest
constant).

execWinUnL ock Exec()
Function prototype:

void execWinUnLockExec();
Parameters: none

This function unlocks the executive thread andvedldts event processing to
continue.

It should be called after a corresponding cadxiwWinLockExec()

Test Har ness Facilities

I ntroduction

Applications written using the State-Event Execaittan be tested in a scripting or
other controlled test environment with the aid loé facilities described in this
section.

A special version of various application-definedilities is used to enable this, as
defined inExecTest.c and TestDep.h . This allows timers and events to be
progressed under full control test facility itsed§ that testing is not subject to the
passage of real time, and so that the state ofstersis internal data can be
verified at any point in its sequence of events.

© 1998 Barnabas Projects Limited Page 29 of 51

3)

2.4.2
(1)

(2)
3)
(4)

(5)

2.4.3
)

(2)
@)
(4)

(5)

(6)

2.4.4
(1)

State-Event Executive User Guide

Hence, the test facility implements execAppCurrek(),
execAppResyncTimer() and the safe CPU idle codelsb provides a means of
breaking in and out of the executive’s main loopl ae-starting and application
after it has been running.

execTestAdvanceTimer()

Function prototype:

void execTestAdvanceTimer (word TickCount);

Parameters: TickCount time (in ticks) to manually advance time by
Returns: nothing.

This function advances the system timer by the iBpdcncrement, causing the
posting of events (in sequence) of any timers timae out during that time

increment.

Note that the timer in the test environment is thed to any real timer, and the
only way to progress simulated time is via thischion.

execTestDoEvents()

Function prototype:

word execWinQuit (word Events);
Parameters: Events the maximum number of events to process
Returns: the number of events actually processed.

Call this function to run the main loop of the extdee as many times as is
required to either process all the events in thenegueues, or to process the
number of events specified, if this number is l&@ssn the number of events
pending.

Calling this function doesnot perform any initialisation ekecAppinit)).
execTestStart() should be called prior to any number of callshis function.

Call this function with a value akffff ~ to process all outstanding events.

execTestStart()

Function prototype:

void execTestStart (void);

© 1998 Barnabas Projects Limited Page 30 of 51

(2)
3)
(4)

(5)

2.5
251
(1)

(2)

®3)

(4)

(5)

(6)

2.5.2
(1)

State-Event Executive User Guide

Parameters: none.
Returns: nothing.

This function initialises the executive’'s own imal data structures and calls the
application initialisation functioregecApplnit()).

It cannot initialise any of the application’s gldl§ar other static) data. Therefore,
if this function is being called subsequent to eising part of the system, then the
test environment must also re-initialise the agian’s data.

Application-Provided Data Structures
Event Definition Table

This is defined as follows:

struct execEventDef

{
byte DefaultPriority;

byte LocalEventNumber;

word Or byte StateMachineNumber;
h

struct execEventDef execEvent[TOTAL_EVENTS];

Each event is given a uniqgue number in the systémchams either a byte or a
word, depending on the number of events in theegygthe event queues can be
defined to be bytes or words, depending on buildoap). This number is an
index into this table.

The default priority refers to the queue which theent is normally posted to,
unless specified otherwise.

The state machine number is an index into the stathine definition table. Each
event belongs to (only) one state machine andfextafely an input to that state
machine.

The local event number is an index into the stedasition table for that state
machine, and defines the event number within tlagesmachine to which it
belongs.

Event number 0 is a dummy event, which is not idetlin the table. It is never

used as such, but is used to indicate an eventhwias been cancelled (and hence
will not be processed). Therefore, the lowest eirethe table is 1 (not 0).

Event Queue Definition Table

This is defined as follows:

© 1998 Barnabas Projects Limited Page 31 of 51

(2)
3)

(4)

(5)

2.5.3
)

(2)

3)

(4)

(5)

(6)

State-Event Executive User Guide

struct execQueueDef
{
word Or byte NumberOfElements;

word Ofr byte *QueueStart;
3

struct execQueueDef execQueue[TOTAL_QUEUES];
The arrayexecQueue is user-supplied, as are the queues themselves.

The event queues are made up of a single byte a aroay for all the queues (i.e.
the queues are contiguous). The size of this pskayeventQueue , is the total of
all the elements in all the queues.

It is important that the queue start pointers ateup correctly so that one queue is
adjacent to the next, with the highest priority ugieat the lowest address (i.e.
effectively in reverse order).

The number of queues in the system is given bygomstantrOTAL_QUEUES

Input Event Definition Table

An input event definition table is defined as folk

struct execlnputEvents

{
word Ofr byte HighEvent[8];

word Or byte LowEvent [8];
byte BitMask;

b

One of these exists for each byte of input thatdgiired to be processed using the
input event posting facility, and the names of ¢éhase user-defined. There need
be none at all if it is not required to generatergs from inputs in this way.

If there are bits in an input byte that need tephmcessed in a special manner, e.g.
at different scan rates, then more than one ofethasles can exist for a given
input byte. The bit mask determines which bitsratevant.

The high event defines the event number to be gastea low to high transition,
and the low event defines the event number to b&edoon a high to low
transition.

The first elements of thigigh /LowEvent array (i.e HighEvent[0] , LowEvent[0])
correspond to the least significant bit of Bi®lask .

An event number of 0 indicates that no event isdgosted. This is useful if it is
only required to post an event for the transitioome direction.

© 1998 Barnabas Projects Limited Page 32 of 51

2.54
1)

(2)

)

2.5.5

(1)

(2)

3)

(4)

(5)

State-Event Executive User Guide

State Machine Definition Table

This is defined as follows:

struct execStateMachineDef

{
byte NumberOfStates;

byte NumberOfEvents;
struct execStateTransitionDef *TransitionTable;

%
struct execStateMachineDef execStateMachine[STATE_M ACHINES];

The arrayexecStateMachine is user-supplied, as are the state transitionesabl
themselves (see section 2.5.5 for the definitiomraiisitionTable , which also
defines the number of states and events).

The number of state machines in the system is gibbgnthe constant
STATE_MACHINES

State Transition Table

Each element in a state transition table is defastbllows:

struct execStateTransitionDef

{
byte NextState;

byte Tag;
void (*EventFunction)(word Tag);

h

A state transition table is a two-dimensional arofystate transition elements as
follows:

execStateTransitionElement MyStateTable[STATES][EVE NTS];

Therefore, in processing an event, the executivet fooks up in the event

definition table to find out which state machinattkvent belongs to, and converts
the global event number into a local event. Itesakhe current state of the
appropriate state machine and does a lookup isttte transition table, based on
event and the current state, to find out the neatesand event function. It calls

the event function and, when it returns, it sets turrent state of that state
machine to the new state as looked up, or if tleestransition has been

overridden by processing in the event functiorthtooverridden state.

TheNextState data item is a number based on 1 rather thae Qe first state in
the table is state dot state 0). A zero state value is used to represeigabled
state machine. When a state machine is enablisdsét to a known starting state,
and a state machine may be disabled at any time.

The event function pointer may be null, in whiclseahe state transition is made,
but no function is called.

© 1998 Barnabas Projects Limited Page 33 of 51

(6)

(7)

(8)

2.5.6

(1)

(2)

3)

(4)

(5)

(6)

State-Event Executive User Guide

The purpose ofag is to identify the state transition if the samadtion is called
for different transitions. This is placed in thelgal variableexecTransitionTag
prior to calling the event function.

The state transition tables are user-provided aayllme given any names that may
be desired MysStateTable is an example in this case.

A valid entry must exist for each event in eachiestdt is recommended that for
‘invalid’ state-event combinations, that an exceptnotification function is called,
and a transition is defined to a state that wowdnfiost appropriate to cause
recovery from the situation.

Structure Definition Array

Each element in a structure definition array isrosf as follows:

struct execStructDef

{

word Size;
word Elements;
word Offset;

h

This structure is used to define the structure stracture, or simple array or data
item, which is to be passed (in a portable wayy @eommunications link. The
pack/unpack facility uses this information (con&nin ROM) to convert the
given structure into and back out of byte-packegdndian format.

A particular definition either consists of a singhestance of this structure if it
describes a simple array or data item, or an asfdliese structures if a structure
or an array of structures is to be described.

A series of macros are provided in order to simgglife construction of descriptor
arrays. These are:

(@) PACK_ELEMENT (structure, type, member, number)

(b) PACK_STRUCT (structure, type, member, number)

(c) PACK_SINGLE (type, number)

(d) PACK_STRUCT_START (structure, number)

(e) PACK_STRUCT_END ()

The use of these macros is best described by eranijg describe a simple array,
e.g.word myArray/[5]; , use the following:

struct execStructDef myArrayDescriptor = PACK_SINGL E (word, 5);

When describing structures, any level of nestadtcire arrays may be used. For
the following:

struct myStructl

byte m_S1E1[2];

© 1998 Barnabas Projects Limited Page 34 of 51

(7)

2.5.7
(1)

State-Event Executive User Guide

word m_S1E2;
3

struct myStruct?2

float m_S2E1;
struct myStructl m_S2E2[3];
word m_S2E3;

h

struct myStruct3

{
byte m_S3E1[10];
struct myStructl m_S3E2;
slword m_S3ES;
struct myStruct2 m_S3E4[4];

2
... the third compound structure is described agvast

struct execStructDef myStruct3Descriptor[16] =

PACK_STRUCT_START (struct myStruct3, 1),

PACK_ELEMENT (struct myStruct3, byte, m_S3E1, 1 0),
PACK_STRUCT (struct myStruct3, struct myStructl , m_S3E2, 1),
PACK_ELEMENT (struct myStructl, byte, m_S1E1, 2),
PACK_ELEMENT (struct myStructl, word, m_S1E2, 1),
PACK_STRUCT_END (),
PACK_ELEMENT (struct myStruct3, slword, m_S3E3, 1),
PACK_STRUCT (struct myStruct3, struct myStruct2 , m_S3E4, 4),
PACK_ELEMENT (struct myStruct2, float, m_S2E1 , 1),
PACK_STRUCT (struct myStruct2, struct myStruc t1, m_S3EZ2, 3),
PACK_ELEMENT (struct myStructl, byte, m_S1E 1, 2),
PACK_ELEMENT (struct myStructl, word, m_S1E 2, 1),
PACK_STRUCT_END (),
PACK_ELEMENT (struct myStruct2, word, m_S2E3, 1),

PACK_STRUCT_END (),
PACK_STRUCT_END ()

I3

Note that the pack and unpack routines use regutsidiandle nested structure
definitions. On microcontrollers where stack speceery short, then the use of
complex nested structures should be avoided, uthessicrocontroller is an 8-bit
big-endian device (such as the 8051), in which gqaseking/unpacking is not
necessary on the target processor.

I ncoming Asynchronous Data Stream State

This block of data is defined as follows:
struct execAsyncStateDef

word Checksum;

enum {OK, Repeat, Overflow, Error, Hunting,

InitialEscape, Node, Sequence, Receiving,
EscapeSequence, Checksuml, Checksum2} Dec odeState;

© 1998 Barnabas Projects Limited Page 35 of 51

(2)

3)

(4)

(5)

(6)

(7)

(8)

State-Event Executive User Guide

byte ThisNode;
byte MessageNode;
byte DataSize;
byte ThisSequence;
byte LastSequence;

h

One of these blocks is required for each incomsygnehronous data stream. This
data is maintained by the functi@secAsyncBytein() , with the exception of
ThisNode Wwhich is set up by the application. This functalters the data in this
structure so that, next time it is called, it ieogting on the same data as previous.

The Checksum is a CRC-16 checksum and represents the checkdutheo
accumulated received data.

The DecodeState is used to track the progress of the incoming .datéhen
reception of a message is completed or abortedutiaion execAsyncByteln()
returns true. When this happens @erdodeState is OK then the message should
be processed and replied to (on a slave).DelfodeState IS Repeat then the
previous reply should be transmitted, unless thessamge is received while
transmitting the previous reply, in which casesitadvisable not to reply, so as to
allow the master to resynchronise. DecodeState Of Overflow Or Error
indicates a corrupted incoming message which shoatdoe replied to (since it
may be the node number which is corrupted — in kvitase a reply would be
expected from another node). Under these circuroeta the master will almost
certainly be expecting a reply and will not get .ondowever, this information
may be useful in gathering statistics about linalipq Note that an overflow
occurs if more than 255 bytes of message dateeasvied (not including repeated
DLE’s), and this may indicate a software problenthatother end of the link.

TheDecodeState on the master is used similarly to the slave, pitieat the state
is used to determine whether to proceed with a eesihange or to do a retry on
the old.

ThisNode is used to filter messages so that only messagesgarticular node are
received. If the node number does not match thenwthole message will be
ignored and the application will not be informethisNode should be set to the
node number of the controller in question, or 26@ll messages are to be
received. An incoming node number of 255 is téads broadcast, and the
incoming message will be registered regardlesshefvialue ofThisNode . A
broadcast should not be replied to.

The MessageNode is the node number embedded in the incoming messag
Normally this will be the same a%isNode when a message has been received.
This may not be the case if either the incomingsage node orhisNode is set

to 255.

The DataSize is the size of the data (in bytes) as it is plaicethe application-

provided buffer (i.e. with leading and trailing datnd double DLE’s removed). It
increments as the data is being received.

© 1998 Barnabas Projects Limited Page 36 of 51

State-Event Executive User Guide

(9) ThisSequence andLastSequence are used in determining whether the message is
a repeat or not. Note that after a correctly rempimessage, these will always be
the same.

258 Other Values

(1) The following values, defined in the applicationatler file “ExecApp.h”, are
required to be provided for the executive to opecairrectly:

(&) TOTAL_QsSIZE

(b) TOTAL_QUEUES
(c) TOTAL_EVENTS
(d) TOTAL_TIMERS
(e) STATE_MACHINES

(2) The file “ExecApp.h” is included by “Exec.h” andetlvalues defined are used by
the executive when it is compiled. This means thatexecutive must be freshly
compiled with each change to this file, and carb®dtistributed as a pre-compiled
library.

(3) By convention, “ExecApp.h” contains all the defiaits required globally by the
application as well as the executive (see the el@msection 4.2).

(4) Alternatively, the application header file may beep a different name, such as
“MyApp.h”, in which case the constant APP_HEADER snhie defined as
“MyApp.h” in the compile options, typically appeag as
APP_HEADER="\"MyApp.h\"".

259 Generating Definitions Automatically

(1) The various data structures and definitions contaimerous cross-dependencies
which, if broken, will cause an application or, wey part of it, to malfunction.
There is therefore a script-based facility to awdtoally insert the relevant code
into the appropriate source code files.

(2) This facility uses the ‘Python’ scripting languageython is free software and can
be downloaded from the Internet w&ivw.python.org It comes complete with
Python interpreter (for Windows, most flavours afixJand Macintosh), library
and comprehensive documentation. It is very easyd programmers to learn,
and the facility supplied with the State-Event Exee can easily be expanded to
generate other parts of application code (e.gréate string tables to give event
trace data meaning).

(3) The automatically-generated parts of the code antamed in special comment-
delimited sections. The pattern of the delimitisgas follows: the start of a
section begins with{{xxx(y) , wherexxx(y) is a pseudo-macro distinguishing
one section from another. The section ends Mith . The script generates these

© 1998 Barnabas Projects Limited Page 37 of 51

(4)

(5)

(6)

(7)

State-Event Executive User Guide

sections internally and then searches all the 8pdcsource files, and matches
these sections in the existing files against tloéi@es it has generated, substituting
in any changes. Thus, these sections must alrpeghgxist in the source files

before the tool is run (though they can be empgdy for the tool to insert the

real code). Note that the tool only modifies thesfwith changes, and warns of
any sections that have not been found or appeaone than one place.

The facility is driven from a main script whichdgfined by the application. This
scripts defines all the necessary table data angorits'calls functions in
‘ExecStuff.py’ which actually manipulates the das#uffing the generated code
into the source files. Running the applicationiaed script with Python from the
command line results in the source files being tgtiaand a log being output to
the screen indicating what has been done. Thestasay to understand how the
application defined script is constructed is to rekee and then modify the
example script (see section 4.1). Note that anyremwill manifest themselves as
Python exceptions, which will abort the script.

The following is a complete list of the pseudo-nosansed by ExecStuff.py.

(@) Used by the functiopenStateTables()

() EXEC_DEFINE() — this contains all the manifest constants and
declarations in the main application header file.

(i) EXEC_DEFINITION() — this contains the overall definition of the eét
state machines

(iif) EXEC_DECLARE() — this contains the declarations of all the state
machines (for the appropriate header file).

(iv) EXEC_SM_DECLARE(, where sm is the manifest constant for a
particular state machine — this contains the stisigarations for a
given state machine.

(v) EXEC_SM_DEFINEém), where sm is the manifest constant for a
particular state machine — this contains the stafmition table for a
given state machine.

(b) Used by the functiogenTimers()
() EXEC_TIMERS() — this contains the manifest constants of therSme

(c) Used by the functiopenCommsStructures()

() EXEC_COMMS_STRUGTK(), where st is the structure tag of the
structure being defined — this contains the stmectieclaration for a
given structure.

(i) EXEC_COMMS_DESCRIPTGR() , Wherest is the structure tag of the
structure being defined — this contains the compatiins packing
descriptor for the given structure.

The functiongenFiles() within ExecStuff.py takes a list o fall these s&t$ and
does the pattern matching and file stuffing.

The functiongenStabReport() ~ within ExecStuff.py generates an HTML file with
the state tables in a more readable tabular form.

© 1998 Barnabas Projects Limited Page 38 of 51

31

3.2

(1)

(2)

®3)

(4)

(1)

(2)

State-Event Executive User Guide

3. DESIGN AND IMPLEMENTATION DETAILS
OF THE EXECUTIVE

Posting Events

Posting events is done by the functeecPostPriorityEvent (execPostEvent
is a macro which callsxecPostPriorityEvent with the default priority for the
event).

This must work whether it is called from a stasnsition function or an interrupt,
including interrupts of higher priority that haveerrupted other interrupt routines.
The posting function therefore has to lock out asct the event queue (by
suspending interrupts) during the critical part$hig operation.

In order to prevent the “event retrieving” parttbé executive from having to do
excessive searching, the posting routine alsougetsrequest to switch to a higher
priority, if necessary. This action also requiaegsource lock.

Hence the following global variables are maintained
byte execRequestedLevel; /I Requested priority leve
byte execCurrentLevel; /I Current priority level

byte execCurrentStateMachine;

byte execNextState;

Retrieving Events

Retrieving events is done by polling the queuesrder of priority, starting with
the level requested by the event posting routinéfisthere are no outstanding
events at that level, then the priority moves dane level, and the same exercise
is repeated until there is nothing outstandingylitth point the executive enters
into idling until an event is posted.

The sequence of processing an event is as follows:

(@) Read the event number, and use it to look up taee shachine and local
event number.

(b) Set the (global) state machine number to the redderalue.

(c) If the current state number is zero (disabled)ndbprocess this event, just
call the trace function and remove the event froenqueue.

(d) Otherwise, from the state machine and local evemibers, find the state
transition.

© 1998 Barnabas Projects Limited Page 39 of 51

@)
(4)

3.3
)

(2)

3)

(4)

34
34.1
(1)

(2)

State-Event Executive User Guide

(e) Setthe (global) next state value from the numbéhe state transition.

(H Call the state transition function (if there is pnpassing the appropriate
variables.

(g) Call the user’s trace function with the approprigégameters.

(nh) If the current state is not zero (i.e. disabled),tee current state of the state
machine to the next state value.

Note that the event queue needs to be locked wdigaving an event.

Note also that the general rule is that state mmashishould manipulate
themselves, primarily by making the transitionsimkd in the state transition
tables in response to events. There is provisoroverride default actions,
however.

Handling Timers

The timer functionality requires an interface t{L&-bit) timer hardware resource,
and this interface is provided by the user (appbca.

The intended implementation is that the timer stidag set up to run for a given
length of time before it issues an interrupt, arfdclv point the timer is set to run
for a new length of time, or disabled if the tinfienction is not in use (for the time
being). It is intended that the timer is a contias free-running timer which

wraps round at FFFF. A compare register can tleeselb up to whatever value is
required.

An alternative implementation involves the use dfnaer tick interrupt. In this

case the timer value is maintained in software, wedtimer comparison is also
done in software. This kind of implementation gpitally used when the
scanning of inputs coincides with the timer tick.

The main timer may count up, or it may optionallpunt down (define
COUNTDOWN when compiling).

I nternal Data Structures

Event Trace Enable Table

This is defined as follows:

byte execTraceTable[(TOTAL_EVENTS/8) + 1];

This is actually a table of bits where a ‘1’ copesds to tracing on that event
number to be enabled. Bit O is a global trace kenblt and this must be 1 for
tracing on any of the other events to be performed.

© 1998 Barnabas Projects Limited Page 40 of 51

3)

(4)

34.2
(1)

(2)

343
(1)

(2)
3)

(4)

344
1)

State-Event Executive User Guide

This table is located in RAM and is controlled bdg/diagnostic facilities in the
application.

When an event occurs and tracing for that evergnigbled, the user defined
functionexecAppTrace is called (see section 2.2.1.7).

Current State Table

This is defined as follows:

byte execCurrentState[STATE_MACHINES];

This is defined in RAM and is used by the executiveénaintain the current state
of each state machine.

Timer Queue

This is defined as follows (and stored in RAM):

struct execTimerDef

{
word TriggerPoint;

word Or byte EventToPost;
word Or byte PreviousNumber;

word Or byte NextNumber;
h

struct execTimerDef execTimer[TOTAL_TIMERS];

All events are single shot, i.e. they disable thelmes once they have triggered.

The timer system is implemented using a single ¢wgzed) main timer which
counts up (or optionally down). When a timer iar&d, the time delay value is
added to the main timer value and stored as thgeripoint. The event is then
posted when the main timer reaches the triggertpoin

The timer system is implemented using a doublyddikst queuing mechanism,
chronologically ordered. Setting a timer adds atryeto the queue, and it is
removed either when the timer times out or whes killed.

Data Queues

A data queue is defined as follows (and storedAMR
struct execDataQueue

{
word Or byte Tail;

© 1998 Barnabas Projects Limited Page 41 of 51

(2)

3)

(4)

State-Event Executive User Guide

word Or byte Count;
byte Data[];

h

Each element of data in a queue is preceded byeabsite, which contains the
number of bytes in the data element which follotws i

The data part of each queue is a circular queue, tabcontain variable length
elements. Thus buffers are copied in and out @fieue and cannot be accessed
directly.

Thus, a data queue is effectively a chain of beféey follows:
Tail | Count | 1% 15 buffer ... | 2™ 2" puffer ... | 3™ 3 puffer ...
size size size

© 1998 Barnabas Projects Limited Page 42 of 51

4.1

State-Event Executive User Guide

4. APPLICATION EXAMPLE

Script for Generating Source Code Tables

The following Python script, Widget.py, will genggahe declarations and tables
for the example in the rest of this section, bet ¢bde examples that follow have
not been generated using this facility.

import sys
sys.path.append("..\\exec") # for ExecStuff, assum
from ExecStuff import *

A Complete set of definitions for exec,

Definition = {
'Event Queues' : ((BACKGND_QUEUE', 128), (LO

(INTERMED_QUEUE', 32), (TOP

'State Tables': (
('smSingleTransition’,
('SM_SINGLE_STATE', 'STAT

((EV_STATUS_REQUEST', 'BACKGND_QUEUE)),

(STAT

((EV_SCAN_TRIGGER', ‘'TOP_QUEUE'), (STAT

)

('smWidgetTransition',
('SM_WIDGET_SEQUENCER', 'WIDGET_IDLE', 'EN

'ENTERING_TRAY","

((EV_DOOR_READY', 'INTERMED_QUE
(ENTERING_SLOT', 0, 'Dispe
(ENTERING_SLOT', 0, None),
(LEAVING_SLOT', 0, None),
(ENTERING_TRAY", 0, None),
(ENTERING_SLOT, 0, 'Dispe
(FAULTY, 0, None))

(CEV_WIDGET_IN_SLOT', 'INTERMED_QUE
(FAULTY', 1, 'LogWi
(LEAVING_SLOT', 0, None),
(LEAVING_SLOT', 0, None),

(FAULTY, 3, 'LogWi
(FAULTY', 3, 'LogWi
(FAULTY', 0, None))

((EV_SLOT_CLEAR', 'INTERMED_QUE
(WIDGET_IDLE', 0, None),
(ENTERING_SLOT', 0, None),
(ENTERING_TRAY", 0, 'Handl
(ENTERING_TRAY", 0, None),
(AWAITING_REMOVAL',0,None),

(FAULTY, 0, None))
(CEV_WIDGET_IN_TRAY', INTERMED_QUE

(FAULTY', 2, 'LogWi

(FAULTY,, 2, 'LogWi

(AWAITING_REMOVAL',0,'StopW
(AWAITING_REMOVAL',0,'StopW
(AWAITING_REMOVAL',0,None),
(FAULTY', 0, None))
((EV_TRAY_CLEAR', 'INTERMED_QUE
(WIDGET_IDLE', 0, None),
(ENTERING_SLOT', 0, None),
(LEAVING_SLOT', 0, None),
(WIDGET_IDLE', 0, 'Recor
(WIDGET_IDLE', 0, 'Recor
(FAULTY', 0, None))
((EV_WIDGET_TIMEOUT', INTERMED_QUE
(WIDGET_IDLE', 0, None),
(FAULTY', 10, 'LogWi
(FAULTY', 10, 'LogWi

© 1998 Barnabas Projects Limited

ing exec is in this directory

CIC. HHHHIHHIHHHHHIHH I

W_QUEUE,, 32),
_QUEUE, 8)),

E1),

E1', 0, 'HandleStatusRequest)),
E1', 0, 'Scaninputs"))

TERING_SLOT', 'LEAVING_SLOT,
AWAITING_REMOVAL', 'FAULTY"),

UE),
nseWidget'), # WIDGET_IDLE

ENTERING_SLOT

LEAVING_SLOT

ENTERING_TRAY
nseWidget'), # AWAITING_REMOVAL
, # FAULTY

UE),
dgetFault), # WIDGET_IDLE
#ENTERING_SLOT
LEAVING_SLOT
dgetFault), # ENTERING_TRAY
dgetFault’), # AWAITING_REMOVAL
, # FAULTY
UE),
WIDGET_IDLE
#ENTERING_SLOT
eWidget), # LEAVING_SLOT
#ENTERING_TRAY
AWAITING_REMOVAL
, # FAULTY
UE),
dgetFault), # WIDGET_IDLE
dgetFault), # ENTERING_SLOT
idget), #LEAVING_SLOT
idget), # ENTERING_TRAY
AWAITING_REMOVAL
, # FAULTY
UE),
WIDGET_IDLE
#ENTERING_SLOT
LEAVING_SLOT
dwidget), # ENTERING_TRAY
dwidget'), # AWAITING_REMOVAL
, # FAULTY
UE),
WIDGET_IDLE
dgetFault), # ENTERING_SLOT
dgetFault), # LEAVING_SLOT

Page 43 of 51

State-Event Executive User Guide

(FAULTY', 10, 'LogWi
(WIDGET_IDLE', 0, 'Recor
(WIDGET_IDLE', 0, None))

)

('smDoorTransition’,
('SM_DOOR_CONTROL', ' DOOR_CLOSED', 'DOOR_O
'DOOR_OPEN', 'DOOR_CLO

((EV_BUTTON_PUSHED", 'LOW_QUEUE)),
(DOOR_OPENING', 0, 'OpenD
(DOOR_OPENING', 0, None),
(DOOR_OPEN', 0, None),
(DOOR_OPENING', 0, 'OpenD

((EV_DOOR_OPEN', 'LOW_QUEUE’),
(DOOR_CLOSED', 0, None),
(DOOR_OPEN', 0, 'Trigg
(DOOR_OPEN', 0, None),
(DOOR_CLOSING', 0, None))

((EV_DOOR_CLOSED', 'LOW_QUEUE),
(DOOR_CLOSED', 0, None),
(DOOR_OPENING', 0, None),
(DOOR_OPEN', 0, None),
(DOOR_CLOSING', 0, None))

((EV_DOOR_TIMEOUT', 'LOW_QUEUE)),
(DOOR_CLOSED', 0, None),
(DOOR_CLOSING', 0, 'Close
(DOOR_CLOSING', 0, 'Close
(DOOR_CLOSING', 0, None))

),
),

Timers' : (WIDGET_TIMER', 'DOOR_TIMER?),
'‘Comms' : ((‘boolean’, 'byte’, 'sbyte’, ‘word',

(('statusDef", 'StatusDefDescriptor’
('byte', 'ID', 1),

('lword', ‘Flags', 2),
(‘DateTimeDef', 'Timestamp', 1)),

(('DateTimeDef', None, 0),
(‘byte’, 'Hour', 1),
(‘byte’, 'Minute’, 1),
(‘byte’, 'Second’, 1),
(‘byte', 'Day', 1),
(‘byte’, 'Month’, 1),
(‘word', 'Year', 1))
)
'Source Files' : (‘Widget.h', 'Widget_d.h', 'Wi
'‘Widget02.c', 'Wi
}
R
genFiles(genStateTables (Definition['Event Queues'
genTimers (Definition[' Timers') +
genCommsStructures (Definition['Comms'),
Definition['Source Files'])
genStabReport(Definition['State Tables'], ‘WidgetS

print 'Source code update complete.’

dgetFault), # ENTERING_TRAY
dwidget), # AWAITING_REMOVAL
FAULTY

PENING',
SINGY),

oor), #DOOR_CLOSED

DOOR_OPENING

DOOR_OPEN

oor)), #FAULTY

DOOR_CLOSED

erWidget'), # DOOR_OPENING
DOOR_OPEN

, # FAULTY

DOOR_CLOSED
DOOR_OPENING
DOOR_OPEN

, # FAULTY

DOOR_CLOSED
DOOR_OPENING
DOOR_OPEN

FAULTY

Door),
Door),

‘'sword', 'lword', 'slword"),

1),

dget00.c', 'Widget0l.c',
dget03.c', 'Widget04.c")

BHHBHHH

], Definition['State Tables') +

tates')

4.2 Application Definition Header File Data

The following is a section from Widget_d.h (whicitiuded by Exec.h for use in
the executive and the application, by defining ¢bastant APP_HEADER to be
“Widget_d.h” in the compile options - this typicall appears as
APP_HEADER="\"Widget_d.h\"" in the command line):

© 1998 Barnabas Projects Limited Page 44 of 51

4.3

State-Event Executive User Guide

#ifdef __C166__
#include "C167Dep.h"
#else

#include "WinDep.h"
#endif

I{{EXEC_DEFINE() — if used, this would go here and
I}

/********************* Q ueues *hkkkkkkkkkkkkkkhkk

#define BACKGND_QSIZE 128

#define LOW_QSIZE 32

#define INTERMED_QSIZE 32

#define TOP_QSIZE 8

#define TOTAL_QSIZE (BACKGND_QSIZE + LOW_QSIZE +

#define BACKGND_QUEUE 0
#define LOW_QUEUE 1
#define INTERMED_QUEUE 2
#define TOP_QUEUE 3
#define TOTAL_QUEUES 4

/********************* Eve nts kkkkkkkkkkkkkkkkkkk

#define NON_EVENT 0
#define EV_STATUS_REQUEST 1
#define EV_SCAN_TRIGGER 2
#define EV_DOOR_READY 3
#define EV_WIDGET_IN_SLOT 4
#define EV_SLOT_CLEAR 5
#define EV_WIDGET_IN_TRAY 6
#define EV_TRAY_CLEAR 7
#define EV_WIDGET_TIMEOUT 8
#define EV_BUTTON_PUSHED 9
#define EV_DOOR_OPEN 10
#define EV_DOOR_CLOSED 11
#define EV_DOOR_TIMEOUT 12

#define TOTAL_EVENTS 12

/********************* State MaChInes *kkkkkkkkkk

#define SM_SINGLE_STATE 0
#define SM_WIDGET_SEQUENCER 1
#define SM_DOOR_CONTROL 2

#define STATE_MACHINES 3
#define SINGLE_EVENTS 2
#define WIDGET_STATES 6
#define WIDGET_EVENTS 6
#define DOOR_STATES 4
#define DOOR_EVENTS 4

/********************* TImeI’S *hkkkkkkkkkkkkkkhkk

I{{EXEC_TIMERS() — if used, this would go here and
I}

#define WIDGET_TIMER 0
#define DOOR_TIMER 1
#define TOTAL_TIMERS 2
#define WIDGET_TIME 2000
#define DOOR_TIME 500

Application Main Header File Data

The following is a section from Widget.h:

extern VCONST struct execlnputEventDef InputEvents;

© 1998 Barnabas Projects Limited

be filled with the following:

INTERMED_QSIZE + TOP_QSIZE)

/

be filled with the following:

Page 45 of 51

4.4

State-Event Executive User Guide

I{{EXEC_DECLARE() — if used, this would go here an
n}

extern VCONST struct execStateTransitionDef smSingl

extern VCONST struct execStateTransitionDef
smWidgetTransition[WIDG

extern VCONST struct execStateTransitionDef
smDoorTransition[DOOR_S

Application-Provided Data Structures

d be filled with:

eTransition[SINGLE_EVENTS];

ET_STATES*WIDGET_EVENTS];

TATES*DOOR_EVENTS];

The following is a section from Widget00.c (mode contains the definition

tables by convention):

#include "Exec.h"

I{{EXEC_DEFINITION() — if used, this would go here
I}

/I Event queue definitions
VCONST struct execQueueDef execQueue[TOTAL_QUEUES]
{BACKGND_QSIZE ,&execEventQueue[0]},

{LOW_QSIZE,&execEventQueue[BACKGND_QSIZE]},
{INTERMED_QSIZE,&execEventQueue[BACKGND_QSIZE+L

{TOP_QSIZE &execEventQueue[BACKGND_QSIZE+LOW_QS

/I State machine definitions
VCONST struct execStateMachineDef execStateMachine[

{1, SINGLE_EVENTS, smSingleTr
{WIDGET_STATES, WIDGET_EVENTS, smWidgetTr
{DOOR_STATES, DOOR_EVENTS, smbDoorTran

k
/I Event definitions

VCONST struct execEventDef execEvent[TOTAL_EVENTS+1

{
{0, 0,0}, I
{BACKGND_QUEUE, 0, SM_SINGLE_STATE}, //
{TOP_QUEUE, 1, SM_SINGLE_STATE}, I
{INTERMED_QUEUE, 0, SM_WIDGET_SEQUENCER}, //
{INTERMED_QUEUE, 1, SM_WIDGET_SEQUENCER}, //
{INTERMED_QUEUE, 2, SM_WIDGET_SEQUENCER}, //
{INTERMED_QUEUE, 3, SM_WIDGET_SEQUENCER}, //
{INTERMED_QUEUE, 4, SM_WIDGET_SEQUENCER}, //
{INTERMED_QUEUE, 5, SM_WIDGET_SEQUENCER}, //
{LOW_QUEUE, 0,SM_DOOR_CONTROL}, //
{LOW_QUEUE, 1, SM_DOOR_CONTROL}, I
{LOW_QUEUE, 2, SM_DOOR_CONTROL}, I
{LOW_QUEUE, 3,SM_DOOR_CONTROL} //

h

/I Input event definitions
VCONST struct execlnputEventDef InputEvents =

{EV_BUTTON_PUSHED, NON_EVENT, NON_EVENT
NON_EVENT, EV_WIDGET_IN_SLOT, EV_WIDGET

{NON_EVENT, NON_EVENT, NON_EVENT
NON_EVENT, EV_SLOT CLEAR, EV_TRAY_C

0x96 /I Bit mask; high-going events (abo
h

© 1998 Barnabas Projects Limited

and be filled with:

OW_QSIZE]},
IZE+INTERMED_QSIZE]}

STATE_MACHINES] =

ansition},
ansition},
sition}

]:

NON_EVENT
EV_STATUS_REQUEST
EV_SCAN_TRIGGER
EV_DOOR_READY
EV_WIDGET_IN_SLOT
EV_SLOT_CLEAR
EV_WIDGET_IN_TRAY
EV_TRAY_CLEAR
EV_WIDGET_TIMEOUT
EV_BUTTON_PUSHED
EV_DOOR_OPEN
EV_DOOR_CLOSED
EV_DOOR_TIMEOUT

, EV_DOOR_OPEN,
_IN_TRAY, NON_EVENT},

, EV_DOOR_CLOSED,
LEAR, NON_EVENT},

ve), low-going events

Page 46 of 51

State-Event Executive User Guide

Application-Provided Routines

The following is a section from WidgetO1.c (mod0l& contains the application-
provided exec. functions by convention):

#include <stddef.h>
#include "Exec.h"

void execApplnit (void)
/I Perform integrity checks

if (execChecklintegrity (0) !=0)

IdleMonitorPin = FALSE; /I Signal sy stem as non-starter
while (1); // Halt

}

else

IdleMonitorPin = TRUE;
/I Initialise the system

SetuplOandInterrupts();

execEnableStateMachine (SM_SINGLE_STATE, 1);
execEnableStateMachine (SM_WIDGET_SEQUENCER, 1)
execEnableStateMachine (SM_DOOR_CONTROL, 1);

}
void execAppldle(void)

IdleMonitorPin = FALSE;

execSafeCpuldle(); // Returns after next i nterrupt has processed
IdleMonitorPin = TRUE;

}

void execAppTrace (byte BeforeState, byte AfterStat e, word Event)

/I Assumes maximum of 15 states and 64 events
I

EmitCodeSomewhere ((word)(((BeforeState&15)<< 10) +
((AfterState&15)<< 6)+
Event&63));

}
#ifndef _WIN32

void Timerinterrupt (void) /* interrupt */

word NextTick, CurrentTick = HwareTimerReg;
/I Process the timeout(s)

NextTick = execProcessTimeouts(CurrentTick);

/I Set up for next interrupt or disable
1

if (NextTick == CurrentTick)
HwareTimerEnable = FALSE; // Disab le timer compare
else
HwareCompareReg = NextTick;
}

word execAppCurrentTick()
/I Return current timer tick

I mmemmemmm e
return HwareTimerReg;

}

void execAppResyncTimer (word TickCount, boolean En able)
HwareTimerEnable = FALSE; // Disable t imer compare

/I Set up for next interrupt

© 1998 Barnabas Projects Limited Page 47 of 51

4.6

State-Event Executive User Guide

HwareCompareReg = TickCount;

/I Enable timer compare if required
1

if (Enable);
HwareTimerEnable = TRUE; /l Enable t imer compare
}
t#else
void execAppFinish()

}
#endif // _WIN32

State M achines

The following sections are from Widget02.c, Widgetf) etc., and each contains
one state machine each. Module 02 contains thglesstate state machine by
convention, which is a collection of all of the avéandling functions for which
state information is irrelevant.

Widget02.c:

#include <stddef.h>
#include "Exec.h"

/********************* State transltlon table *kkk /
I{{EXEC_SM_DECLARE(SM_SINGLE_STATE) — if used, thi s would go here, filled with:
I}

/I States

#define STATEL 1 /I The only valid state
/I State transition functions

static void HandleStatusRequest(void);
static void Scanlnputs(void);

I{{EXEC_SM_DEFINE(SM_SINGLE_STATE) — if used, this would go here, filled with:
I}
/| State table
I —mmmemeee-
VCONST struct execStateTransitionDef smSingleTransi tion[SINGLE_EVENTS] =
{
/I STATEL:
I -
{STATE1, O, HandleStatusRequest}, //EV_S TATUS_REQUEST
{STATE1, 0, Scaninputs} IIEV_S CAN_TRIGGER
h
[rrmiirrrkiarkkikk - State transition functions /

/I Handle status request

static void HandleStatusRequest (void)
ReplyToRequest();

/I Trigger events based on input pin transitions

1
static void Scanlnputs (void)

static byte OldInputs = 0x0000, ValidatedInputs = 0x0000;

© 1998 Barnabas Projects Limited Page 48 of 51

State-Event Executive User Guide

execPostinputEvents (PinPort, &OldInputs, &Vali datedInputs, &InputEvents);
}

Widget03.c; Widget sequencer state machine:

#include <stddef.h>
#include "Exec.h"

/********************* State tranSItIOn table *kkk /

IF{EXEC_SM_DECLARE(SM_WIDGET_SEQUENCER) —if used, this would go here, with:
I}

/I States

#define WIDGET_IDLE 1
#define ENTERING_SLOT 2
#define LEAVING_SLOT 3
#define ENTERING_TRAY 4
#define AWAITING_REMOVAL 5
#define FAULTY 6

/I State transition functions

static void DispenseWidget(void);
static void HandleWidget(void);
static void StopWidget(void);
static void RecordWidget(void);
static void LogWidgetFault(void);

IF{EXEC_SM_DEFINE(SM_WIDGET_SEQUENCER) — if used, this would go here, with:
n

/I State table

VCONST struct execStateTransitionDef smWidgetTransi tion[WIDGET_STATES *
WIDGET_EVENTS] =

{
/I WIDGET_IDLE:
/p——

{ENTERING_SLOT, 0, DispenseWidget}, // EV_D OOR_READY
{FAULTY, 1, LogWidgetFault}, // EV_W IDGET_IN_SLOT
{WIDGET_IDLE, 0, NOFUNC}, IIEV_S LOT_CLEAR
{FAULTY, 2, LogWidgetFault}, // EV_W IDGET_IN_TRAY
{WIDGET_IDLE, 0, NOFUNC}, HEV_T RAY_CLEAR
{WIDGET_IDLE, 0, NOFUNC}, IIEV_W IDGET_TIMEOUT

/I ENTERING_SLOT:
/——

{ENTERING_SLOT, 0, NOFUNC}, //EV_D OOR_READY
{LEAVING_SLOT, 0, NOFUNC}, Il EV_W IDGET_IN_SLOT
{ENTERING_SLOT, 0, NOFUNC}, IIEV_S LOT_CLEAR
{FAULTY, 2, LogWidgetFault}, // EV_W IDGET_IN_TRAY
{ENTERING_SLOT, 0, NOFUNC}, HEV_T RAY_CLEAR
{FAULTY, ~ 10, LogWidgetFault}, // EV_W IDGET_TIMEOUT

/I LEAVING_SLOT:

{LEAVING_SLOT, 0, NOFUNC}, /lEV_D OOR_READY
{LEAVING_SLOT, 0, NOFUNC}, I EV_W IDGET_IN_SLOT
{ENTERING_TRAY, 0, HandleWidget}, //EV_S LOT_CLEAR
{AWAITING_REMOVAL,0,StopWidget}, //EV_W IDGET_IN_TRAY
{LEAVING_SLOT, 0, NOFUNC}, HEV_T RAY_CLEAR
{FAULTY, 10, LogWidgetFault}, // EV_W IDGET_TIMEOUT

/I ENTERING_TRAY:
/—

{ENTERING_TRAY, 0, NOFUNC}, //EV_D OOR_READY
{FAULTY, 3, LogWidgetFault}, // EV_W IDGET_IN_SLOT
{ENTERING_TRAY, 0, NOFUNC}, IIEV_S LOT_CLEAR
{AWAITING_REMOVAL,0,StopWidget}, // EV_WID GET_IN_TRAY
{WIDGET_IDLE, 0, RecordWidget}, // EV_TRA Y_CLEAR

© 1998 Barnabas Projects Limited Page 49 of 51

State-Event Executive User Guide

{FAULTY, 10, LogWidgetFault}, // EV_WID GET_TIMEOUT

/I AWAITING_REMOVAL:

{ENTERING_SLOT, 0, DispenseWidget}, // EV_D OOR_READY
{FAULTY, 3, LogWidgetFault}, //EV_W IDGET_IN_SLOT
{AWAITING_REMOVAL,0,NOFUNC}, IEV_S LOT_CLEAR
{AWAITING_REMOVAL,0,NOFUNC}, IEV_W IDGET_IN_TRAY
{WIDGET_IDLE, 0, RecordWidget}, //EV_T RAY_CLEAR
{WIDGET_IDLE, 0, RecordWidget}, //EV_W IDGET_TIMEOUT

/I FAULTY:

I -
{FAULTY, 0, NOFUNC}, Il EV_D OOR_READY
{FAULTY, 0, NOFUNC}, Il EV_W IDGET_IN_SLOT
{FAULTY, 0, NOFUNC}, I/EV_S LOT_CLEAR
{FAULTY, 0, NOFUNC}, I EV_W IDGET_IN_TRAY
{FAULTY, 0, NOFUNC}, IIEV_T RAY_CLEAR
{WIDGET_IDLE, 0, NOFUNC} I EV_W IDGET_TIMEOUT

5

[rrxxxxkkkkkkkiiiiiik - State transition functions /

[/ Start by turning widget dispenser on
1
static void DispenseWidget(void)

WidgetDispenser (TRUE);
execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);
}

/I Turn widget dispenser off, widget handler on
1
static void HandleWidget(void)

WidgetDispenser (FALSE);
WidgetHandler (TRUE);
execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);

}

/I Turn widget handler off

static void StopWidget(void)

WidgetHandler (FALSE);

execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);
}
/I Record the removal of a widget by sending a numb er

1 -
static void RecordWidget(void)

EmitCodeSomewhere (0x4000 + execTransitionTag);
execSetTimer (WIDGET_TIMER, WIDGET_TIME, EV_WID GET_TIMEOUT);

}

/I Log fault by sending the fault number somewhere
1
static void LogWidgetFault(void)

EmitCodeSomewhere (0x8000 + execTransitionTag);

}

Widget04.c; Door sequencer state machine:

#include <stddef.h>
#include "Exec.h"

/********************* State tranSItIOn table *kkk /

IF{EXEC_SM_DECLARE(SM_DOOR_CONTROL) — if used, thi s would go here, with:
n

/| States

© 1998 Barnabas Projects Limited Page 50 of 51

State-Event Executive User Guide

/e

#define DOOR_CLOSED 1
#define DOOR_OPENING 2
#define DOOR_OPEN 3
#define DOOR_CLOSING 4

/I State transition functions
static void OpenDoor(void);
static void TriggerWidget(void);

static void CloseDoor(void);

IF{EXEC_SM_DEFINE(SM_DOOR_CONTROL) — if used, this
n

/I State table

VCONST struct execStateTransitionDef smDoorTransiti

{
/I DOOR_CLOSED:

{DOOR_OPENING, 0, OpenDoor}, /lEV_B
{DOOR_CLOSED, 0, NOFUNC}, //EV_D
{DOOR_CLOSED, 0, NOFUNC}, //EV_D
{DOOR_CLOSED, 0, NOFUNC}, /I EV_D
/I DOOR_OPENING:
[/ ——
{DOOR_OPENING, 0, NOFUNC}, /lEV_B

{DOOR_OPEN, 0, TriggerWidget}, //EV_D

{DOOR_OPENING, 0, NOFUNC}, //EV_D
{DOOR_CLOSING, 0, CloseDoor}, //EV_D
/I DOOR_OPEN:
/—
{DOOR_OPEN, 0, NOFUNC}, I/EV_B
{DOOR_OPEN, 0, NOFUNC}, I/EV_D
{DOOR_OPEN, 0, NOFUNC}, //EV_D
{DOOR_CLOSING, 0, CloseDoor}, I/EV_D
/I DOOR_CLOSING:
/—
{DOOR_OPENING, 0, OpenDoor }, /lEV_B
{DOOR_CLOSING, 0, NOFUNC}, //EV_D
{DOOR_CLOSING, 0, NOFUNC}, //EV_D
{DOOR_CLOSING, 0, NOFUNC} //EV_D

[FrRkkkkkkkkkkiiikkkk - State transition functions

/I Activate the door opener to open it
1
static void OpenDoor(void)

{

EnergiseDoor (TRUE);

execSetTimer (DOOR_TIMER, DOOR_TIME, EV_DOOR_TI

}

/I Start the widget sequencer off
1
static void TriggerWidget(void)

execPostEvent (EV_DOOR_READY);
}

/I De-activate the door opener to close it
1
static void CloseDoor(void)

EnergiseDoor (FALSE);
}

© 1998 Barnabas Projects Limited

would go here, with:

on[DOOR_STATES *
DOOR_EVENTS] =

UTTON_PUSHED
OOR_OPEN
OOR_CLOSED
OOR_TIMEOUT

UTTON_PUSHED
OOR_OPEN
OOR_CLOSED
OOR_TIMEOUT

UTTON_PUSHED
OOR_OPEN
OOR_CLOSED
OOR_TIMEOUT

UTTON_PUSHED
OOR_OPEN
OOR_CLOSED
OOR_TIMEOUT

MEOUT);

Page 51 of 51

